Maintaining Verbal-Spatial Associations in Working Memory: The Influence of Encoding Time

2013 ◽  
Author(s):  
Naomi Langerock ◽  
Evie Vergauwe ◽  
Pierre Barrouillet
2020 ◽  
Author(s):  
Sami Yousif ◽  
Monica D. Rosenberg ◽  
Frank Keil

Spatial information plays an important role in how we remember. In general, there are two (non mutually exclusive) views regarding the role that space plays in memory. One view is that objects overlapping in space interfere with each other in memory. For example, objects presented in the same location (at different points in time) are more frequently confused with one another than objects that are not. Another view is that spatial information can ‘bootstrap’ other kinds of information. For example, remembering a phone number is easier one can see the arrangement of a keypad. Here, building on both views, we test the hypothesis that task-irrelevant spatial structure (i.e., objects appearing in stable locations over repeated iterations) improves working memory. Across 7 experiments, we demonstrate that (1) irrelevant spatial structure improves memory for sequences of objects; (2) this effect does not depend on long-term spatial associations; (3) this effect is unique to space (as opposed to features like color); and (4) spatial structure can be teased apart from spatial interference, and the former drives memory improvement. We discuss how these findings challenge and extend both ‘spatial interference’ and ‘visuospatial bootstrapping’ accounts.


2006 ◽  
Vol 55 (2) ◽  
pp. 274-289 ◽  
Author(s):  
Nelson Cowan ◽  
J. Scott Saults ◽  
Candice C. Morey

2020 ◽  
Vol 73 (8) ◽  
pp. 1150-1161
Author(s):  
Dandan Zhou ◽  
Jie Luo ◽  
Zizhen Yi ◽  
Yun Li ◽  
Shuting Yang ◽  
...  

Spatial-numerical and spatial-positional associations have been well documented in the domains of numerical cognition and working memory, respectively. However, such associations are typically calculated by directly comparing (e.g., subtracting) left- versus right-hand responses; it remains an open question whether such associations reside in each hand individually, or are exclusively localised in one of the two hands. We conducted six experiments to investigate the hand-lateralization of both spatial-numerical and spatial-positional associations. All experiments revealed that the spatial associations stemmed from left-hand responses, irrespective of the handedness of the subjects, but with the exception of the magnitude comparison task (Experiments 5 and 6). We propose that the hemispheric lateralization of the tasks in combination with the task-relevance of spatial associations can explain this pattern. More generally, we suggest that the contributions of left and right hands require more attention in spatial-numerical and spatial-positional research.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


2016 ◽  
Vol 39 ◽  
Author(s):  
Arnon Lotem ◽  
Oren Kolodny ◽  
Joseph Y. Halpern ◽  
Luca Onnis ◽  
Shimon Edelman

AbstractAs a highly consequential biological trait, a memory “bottleneck” cannot escape selection pressures. It must therefore co-evolve with other cognitive mechanisms rather than act as an independent constraint. Recent theory and an implemented model of language acquisition suggest that a limit on working memory may evolve to help learning. Furthermore, it need not hamper the use of language for communication.


2020 ◽  
Vol 63 (9) ◽  
pp. 3036-3050
Author(s):  
Elma Blom ◽  
Tessel Boerma

Purpose Many children with developmental language disorder (DLD) have weaknesses in executive functioning (EF), specifically in tasks testing interference control and working memory. It is unknown how EF develops in children with DLD, if EF abilities are related to DLD severity and persistence, and if EF weaknesses expand to selective attention. This study aimed to address these gaps. Method Data from 78 children with DLD and 39 typically developing (TD) children were collected at three times with 1-year intervals. At Time 1, the children were 5 or 6 years old. Flanker, Dot Matrix, and Sky Search tasks tested interference control, visuospatial working memory, and selective attention, respectively. DLD severity was based on children's language ability. DLD persistence was based on stability of the DLD diagnosis. Results Performance on all tasks improved in both groups. TD children outperformed children with DLD on interference control. No differences were found for visuospatial working memory and selective attention. An interference control gap between the DLD and TD groups emerged between Time 1 and Time 2. Severity and persistence of DLD were related to interference control and working memory; the impact on working memory was stronger. Selective attention was unrelated to DLD severity and persistence. Conclusions Age and DLD severity and persistence determine whether or not children with DLD show EF weaknesses. Interference control is most clearly impaired in children with DLD who are 6 years and older. Visuospatial working memory is impaired in children with severe and persistent DLD. Selective attention is spared.


2020 ◽  
Vol 63 (12) ◽  
pp. 4162-4178
Author(s):  
Emily Jackson ◽  
Suze Leitão ◽  
Mary Claessen ◽  
Mark Boyes

Purpose Previous research into the working, declarative, and procedural memory systems in children with developmental language disorder (DLD) has yielded inconsistent results. The purpose of this research was to profile these memory systems in children with DLD and their typically developing peers. Method One hundred four 5- to 8-year-old children participated in the study. Fifty had DLD, and 54 were typically developing. Aspects of the working memory system (verbal short-term memory, verbal working memory, and visual–spatial short-term memory) were assessed using a nonword repetition test and subtests from the Working Memory Test Battery for Children. Verbal and visual–spatial declarative memory were measured using the Children's Memory Scale, and an audiovisual serial reaction time task was used to evaluate procedural memory. Results The children with DLD demonstrated significant impairments in verbal short-term and working memory, visual–spatial short-term memory, verbal declarative memory, and procedural memory. However, verbal declarative memory and procedural memory were no longer impaired after controlling for working memory and nonverbal IQ. Declarative memory for visual–spatial information was unimpaired. Conclusions These findings indicate that children with DLD have deficits in the working memory system. While verbal declarative memory and procedural memory also appear to be impaired, these deficits could largely be accounted for by working memory skills. The results have implications for our understanding of the cognitive processes underlying language impairment in the DLD population; however, further investigation of the relationships between the memory systems is required using tasks that measure learning over long-term intervals. Supplemental Material https://doi.org/10.23641/asha.13250180


Sign in / Sign up

Export Citation Format

Share Document