scholarly journals Passive exposure attenuates distraction during visual search.

2020 ◽  
Vol 149 (10) ◽  
pp. 1987-1995 ◽  
Author(s):  
Bo-Yeong Won ◽  
Joy J. Geng
2021 ◽  
Author(s):  
David Pascucci ◽  
Gizay Ceylan ◽  
Arni Kristjansson

Humans can rapidly estimate the statistical properties of groups of stimuli, including their average and variability. But recent studies of so-called Feature Distribution Learning (FDL) have shown that observers can quickly learn even more complex aspects of feature distributions. In FDL, observers learn the full shape of a distribution of features in a set of distractor stimuli and use this information to improve visual search: response times (RT) are slowed if the target feature lies inside the previous distractor distribution, and the RT patterns closely reflect the distribution shape. FDL requires only a few trials and is markedly sensitive to different distribution types. It is unknown, however, whether our perceptual system encodes feature distributions automatically and by passive exposure, or whether this learning requires active engagement with the stimuli. In two experiments, we sought to answer this question. During an initial exposure stage, participants passively viewed a display of 36 lines that included one orientation singleton or no singletons. In the following search display, they had to find an oddly oriented target. The orientations of the lines were determined either by a Gaussian or a uniform distribution. We found evidence for FDL only when the passive trials contained an orientation singleton. Under these conditions, RT decreased as a function of the orientation distance between the target and the exposed distractor distribution. These results suggest that FDL can occur by passive exposure, but only if an orientation singleton appears during exposure to the distribution.


2020 ◽  
Author(s):  
Bo Yeong Won ◽  
Joy Geng

Distractions are ubiquitous in our sensory environments. How do we keep them from capturing attention? Existing research has focused primarily on mechanisms of strategic control or statistical learning, both of which require knowledge (explicit or implicit) of what features belong to distractors before suppression occurs. Here, we test the hypothesis that task-free exposure to stimuli is sufficient to attenuate their effect as distractors later on. In three experiments, subjects were exposed to either colored or achromatic circles on “circle displays” interleaved with “target search displays”. Later, new distractors were introduced into the search displays using colors from the circle displays. We consistently found that passively viewed colors produced less interference when introduced as new visual search distractors. We conclude that learning during passive exposure was due to habituation mechanisms that attenuate sensory responsivity to recurring stimuli, allowing attention to operate more efficiently to select task-relevant targets or novel stimuli.


2015 ◽  
Vol 74 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Alexandre Coutté ◽  
Gérard Olivier ◽  
Sylvane Faure

Computer use generally requires manual interaction with human-computer interfaces. In this experiment, we studied the influence of manual response preparation on co-occurring shifts of attention to information on a computer screen. The participants were to carry out a visual search task on a computer screen while simultaneously preparing to reach for either a proximal or distal switch on a horizontal device, with either their right or left hand. The response properties were not predictive of the target’s spatial position. The results mainly showed that the preparation of a manual response influenced visual search: (1) The visual target whose location was congruent with the goal of the prepared response was found faster; (2) the visual target whose location was congruent with the laterality of the response hand was found faster; (3) these effects have a cumulative influence on visual search performance; (4) the magnitude of the influence of the response goal on visual search is marginally negatively correlated with the rapidity of response execution. These results are discussed in the general framework of structural coupling between perception and motor planning.


2008 ◽  
Vol 67 (2) ◽  
pp. 71-83 ◽  
Author(s):  
Yolanda A. Métrailler ◽  
Ester Reijnen ◽  
Cornelia Kneser ◽  
Klaus Opwis

This study compared individuals with pairs in a scientific problem-solving task. Participants interacted with a virtual psychological laboratory called Virtue to reason about a visual search theory. To this end, they created hypotheses, designed experiments, and analyzed and interpreted the results of their experiments in order to discover which of five possible factors affected the visual search process. Before and after their interaction with Virtue, participants took a test measuring theoretical and methodological knowledge. In addition, process data reflecting participants’ experimental activities and verbal data were collected. The results showed a significant but equal increase in knowledge for both groups. We found differences between individuals and pairs in the evaluation of hypotheses in the process data, and in descriptive and explanatory statements in the verbal data. Interacting with Virtue helped all students improve their domain-specific and domain-general psychological knowledge.


Author(s):  
Angela A. Manginelli ◽  
Franziska Geringswald ◽  
Stefan Pollmann

When distractor configurations are repeated over time, visual search becomes more efficient, even if participants are unaware of the repetition. This contextual cueing is a form of incidental, implicit learning. One might therefore expect that contextual cueing does not (or only minimally) rely on working memory resources. This, however, is debated in the literature. We investigated contextual cueing under either a visuospatial or a nonspatial (color) visual working memory load. We found that contextual cueing was disrupted by the concurrent visuospatial, but not by the color working memory load. A control experiment ruled out that unspecific attentional factors of the dual-task situation disrupted contextual cueing. Visuospatial working memory may be needed to match current display items with long-term memory traces of previously learned displays.


2000 ◽  
Vol 15 (2) ◽  
pp. 286-296 ◽  
Author(s):  
Arthur F. Kramer ◽  
Paul Atchley
Keyword(s):  

Author(s):  
Stanislav Dornic ◽  
Ragnar Hagdahl ◽  
Gote Hanson

Sign in / Sign up

Export Citation Format

Share Document