scholarly journals Formation of N-Nitrosodimethylamine from Naturally Occurring Quaternary Ammonium Compounds and Tertiary Amines

Nature ◽  
1972 ◽  
Vol 236 (5345) ◽  
pp. 307-307 ◽  
Author(s):  
WALTER FIDDLER ◽  
JOHN W. PENSABENE ◽  
ROBERT C. DOERR ◽  
AARON E. WASSERMAN
1986 ◽  
Vol 9 (12) ◽  
pp. 1008-1014 ◽  
Author(s):  
HIROSHI SAITOH ◽  
NORIKO HASEGAWA ◽  
SHINJI KAWAI ◽  
KATSUMI MIYAZAKI ◽  
TAKAICHI ARITA

Synlett ◽  
2018 ◽  
Vol 30 (02) ◽  
pp. 173-177
Author(s):  
Vladimir Р. Sheverdov ◽  
Vera Davydova ◽  
Oleg Nasakin ◽  
Maksim Mar’yasov ◽  
Olga Lodochnikova

We discovered a new method to methylate tertiary amines such as urotropine, triethylamine, pyridine, 2-methylpyridine, 4-acetylpyridine, and isonicotinamide, up to quaternary ammonium compounds, with 1,1-dicyano-2-methoxy-2-oxoethane-1-ide being the counterion. Methyl-1,3,5,7-tetraazaadamantan-1-ium 1,1-dicyano-2-methoxy-2-oxoethane-1-ide, N,N-diethyl-N-methylethanaminium 1,1-dicyano-2-methoxy-2-oxoethane-1-ide, and substituted-methylpyridinium 1,1-dicyano-2-methoxy-2-oxoethane-1-ides were synthesized. Quaternary ammonium compounds of 1,1-dicyano-2-methoxy-2-oxothane-1-ide were synthesized within a single stage by stirring methanol solutions of tertiary amines with ethene-1,1,2,2-tetracarbonitrile (ETCN) at room temperature. In the reaction of ETCN with tertiary amines in methanol, processes occur that form the 1,1-dicyano-2-methoxy-2-oxoethane-1-ide fragment with simultaneous N-methylation. Crystal structures based on X-ray diffraction analysis of the obtained compounds were studied.


2020 ◽  
Vol 86 (8) ◽  
pp. 23-31
Author(s):  
V. G. Amelin ◽  
D. S. Bolshakov

The goal of the study is developing a methodology for determination of the residual amounts of quaternary ammonium compounds (QAC) in food products by UHPLC/high-resolution mass spectrometry after water-acetonitrile extraction of the determined components from the analyzed samples. The identification and determination of QAC was carried out on an «UltiMate 3000» ultra-high-performance liquid chromatograph (Thermo Scientific, USA) equipped with a «maXis 4G» high-resolution quadrupole-time-of-flight mass spectrometric detector and an ion spray «ionBooster» source (Bruker Daltonics, Germany). Samples of milk, cheese (upper cortical layer), dumplings, pork, chicken skin and ground beef were used as working samples. Optimal conditions are specified for chromatographic separation of the mixture of five QAC, two of them being a mixture of homologues with a linear structure (including isomeric forms). The identification of QAC is carried out by the retention time, exact mass of the ions, and coincidence of the mSigma isotopic distribution. The limits for QAC detection are 0.1 – 0.5 ng/ml, the determination limits are 1 ng/ml for aqueous standard solutions. The determinable content of QAC in food products ranges within 1 – 100 ng/g. The results of analysis revealed the residual amount of QAC present in all samples, which confirms data of numerous sources of information about active use of QAC-based disinfectants in the meat and dairy industry. The correctness of the obtained results is verified by introduction of the additives in food products at a level of 10 ng/g for each QAC. The relative standard deviation of the analysis results does not exceed 0.18. The duration of the analysis is 30 – 40 min.


Sign in / Sign up

Export Citation Format

Share Document