Sensitisation of pituitary cells to luteinising hormone releasing hormone by clomiphene citrate in vitro

Nature ◽  
1978 ◽  
Vol 273 (5657) ◽  
pp. 57-59 ◽  
Author(s):  
A. J. W. HSUEH ◽  
G. F. ERICKSON ◽  
S. S. C. YEN
1986 ◽  
Vol 109 (2) ◽  
pp. 155-161 ◽  
Author(s):  
J. E. A. McIntosh ◽  
R. P. McIntosh

ABSTRACT Our aim was to determine whether release of LH and FSH can be controlled differentially by the characteristics of applied signals of stimulatory gonadotrophin-releasing hormone (GnRH) alone, free of the effects of steroid feedback or other influences from the whole animal. The outputs of both gonadotrophins were significantly correlated (r≈0·90; P<0·0005) when samples of freshly dispersed sheep pituitary cells were perifused in columns for 7 h with medium containing a range of concentrations of GnRH in various patterns of pulses. Hormone released in response to the second, third and fourth pulses from every column was analysed in detail. Dose–response relationships for both LH and FSH were very similar when cells were stimulated with 5–8500 pmol GnRH/1 in 5-min pulses every hour. When GnRH was delivered in pulses at a maximally stimulating level, the outputs of both hormones increased similarly with increasing inter-pulse intervals. Efficiency of stimulation (release of gonadotrophin/unit stimulatory GnRH) decreased (was desensitized) with increasing pulse duration in the same way for both hormones. Thus, varying the dose, interval and duration of GnRH pulses did not alter the proportions of LH and FSH released in the short-term from freshly dissociated cells. However, the same cell preparations released more LH relative to FSH when treated with maximally stimulating levels of GnRH for 3 h in the presence of 10% serum from a sheep in the follicular phase of its ovulatory cycle compared with charcoal-treated serum. Because there was no gonadotrophin synthesis under the conditions used in vitro these results suggest that changes in the LH/FSH ratio seen in whole animals are more likely to result from differential clearance from the circulation, ovarian feedback at the pituitary, differential synthesis in intact tissue or another hormone influencing FSH secretion, rather than from differences in the mechanism of acute release controlled by GnRH. J. Endocr. (1986) 109, 155–161


1983 ◽  
Vol 61 (2) ◽  
pp. 186-189 ◽  
Author(s):  
Noboru Fujihara ◽  
Masataka Shiino

The effect of thyrotrophin-releasing hormone (TRH, 10−7 M) on luteinizing hormone (LH) release from rat anterior pituitary cells was examined using organ and primary cell culture. The addition of TRH to the culture medium resulted in a slightly enhanced release of LH from the cultured pituitary tissues. However, the amount of LH release stimulated by TRH was not greater than that produced by luteinizing hormone – releasing hormone (LH–RH, 10−7 M). Actinomycin D (2 × 10−5 M) and cycloheximide (10−4 M) had an inhibitory effect on the action of TRH on LH release. The inability of TRH to elicit gonadotrophin release from the anterior pituitary glands in vivo may partly be due to physiological inhibition of its action by other hypothalamic factor(s).


1990 ◽  
Vol 127 (1) ◽  
pp. 149-159 ◽  
Author(s):  
S. Muttukrishna ◽  
P. G. Knight

ABSTRACT Primary cultures of ovine pituitary cells (from adult ewes) were used to investigate the actions of steroid-free bovine follicular fluid (bFF) and highly-purified Mr 32 000 bovine inhibin on basal and gonadotrophin-releasing hormone (GnRH)-induced release of FSH and LH. Residual cellular contents of each hormone were also determined allowing total gonadotrophin content/well to be calculated. As in rats, both crude and highly purified inhibin preparations promoted a dose (P < 0·001)- and time (P < 0·001)-dependent suppression of basal and GnRH-induced release of FSH as well as an inhibition of FSH synthesis, reflected by a fall in total FSH content/well. However, while neither inhibin preparation affected basal release of LH or total LH content/well, GnRH-induced LH release was significantly (P< 0·001) increased by the presence of either bFF (+ 75%) or highly-purified inhibin (+ 64%) in a dose- and time-dependent manner. This unexpected action of bFF on GnRH-induced LH release was abolished in the presence of 5 μl specific anti-inhibin serum, confirming that the response was indeed mediated by inhibin. Furthermore, neither oestradiol-17β (1 pmol/l–10 nmol/l) nor monomeric α-subunit of bovine inhibin (2·5–40 ng/ml) significantly affected basal or GnRH-induced release of LH. These in-vitro findings for the ewe lend support to a number of recent in-vivo observations and indicate that, in addition to its well-documented suppressive effect on the synthesis and secretion of FSH, inhibin may actually facilitate LH release in this species, in marked contrast to its action in the rat. Journal of Endocrinology (1990) 127, 149–159


1981 ◽  
Vol 240 (2) ◽  
pp. E125-E130 ◽  
Author(s):  
E. Y. Adashi ◽  
A. J. Hsueh ◽  
T. H. Bambino ◽  
S. S. Yen

The direct effects of clomiphene citrate (Clomid), tamoxifen, and estradiol (E2) on the gonadotropin-releasing hormone (GnRH)-stimulated release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were studied in cultured anterior pituitary cells obtained from adult ovariectomized rats. Treatment of pituitary cells with Clomid or enclomid (10(-8) M) in vitro for 2 days resulted in a marked sensitization of the gonadotroph to GnRH as reflected by a 6.5-fold decrease in the ED50 of GnRH in terms of LH release from 2.2 x 10(-9) M in untreated cells to 3.6 x 10(-10) M. Treatment with E2 or Clomid also increased the sensitivity of the gonadotroph to GnRH in terms of FSH release by 4.3- and 3.3-fold respectively. Tamoxifen, a related antiestrogen, comparable to Clomid in terms of its ability to compete with E2 for pituitary estrogen receptors, was without effect on the GnRH-stimulated LH release at a concentration of 10(-7) M. Furthermore, tamoxifen, unlike Clomid, caused an apparent but not statistically significant inhibition of the sensitizing effect of E2 on the GnRH-stimulated release of LH. Our findings suggest that Clomid and its Enclomid isomer, unlike tamoxifen, exert a direct estrogenic rather than an antiestrogenic effect on cultured pituitary cells by enhancing the GnRH-stimulated release of gonadotropin.


1988 ◽  
Vol 119 (2) ◽  
pp. 233-241 ◽  
Author(s):  
P. G. Farnworth ◽  
D. M. Robertson ◽  
D. M. de Kretser ◽  
H. G. Burger

ABSTRACT The effects of 31 kDa bovine inhibin on the release of FSH and LH stimulated by gonadotrophin-releasing hormone (GnRH) or its agonist analogue buserelin have been studied using 5-day-old cultures of pituitary cells prepared from adult male Sprague–Dawley rats. Exposure of cultures to increasing concentrations of inhibin for 3 days before and during a 4-h stimulation with GnRH resulted in the progressive suppression of both basal and stimulated gonadotrophin release. At the highest inhibin concentrations FSH release was abolished (inhibin median inhibitory concentration (IC50) = 0·15 U/ml) whereas LH release was suppressed by 75% (IC50 = 0·93 U/ml). To correct for the reduced size of the FSH pool resulting from inhibin pretreatment, the amount of FSH or LH released by an agonist was expressed as a proportion of the total hormone available for release in each case. Following this adjustment, concentrations of inhibin producing maximal effects increased the GnRH median effective concentration for FSH release 4·1-fold and that for LH release 2·2-fold, with inhibin IC50 values of 0·45 and 0·32 U/ml respectively. Inhibin also suppressed the maximum proportion of both FSH and LH that excess GnRH released in 4 h by 36%, with IC50 values of 0·53 and 0·76 U/ml respectively. These effects were not changed by reduction of the inhibin pretreatment period from 3 days to 1 day or by exclusion of inhibin during the stimulation period. After a 3-day pretreatment, inhibin inhibited gonadotrophin release by buserelin less effectively than that by GnRH, but the pattern of antagonism was the same. The results show that purified bovine inhibin antagonizes the release of both FSH and LH stimulated by either GnRH or buserelin in vitro by reducing the apparent potency of GnRH agonists and by decreasing the proportion of total available gonadotrophin that can be released by an excess of GnRH agonist. Higher concentrations of inhibin are required for these common actions against stimulated release of FSH and LH than for the inhibition of FSH tonic synthesis/basal release, indicating one or more secondary sites of inhibin action in addition to its primary selective action to suppress the constitutive synthesis of FSH. J. Endocr. (1988) 119, 233–241


1977 ◽  
Vol 75 (2) ◽  
pp. 277-283 ◽  
Author(s):  
N. BARDEN ◽  
A. BETTERIDGE

The addition of luteinizing hormone releasing hormone (LH-RH) to cultures of monolayers of rat anterior pituitary cells was shown to increase both the concentrations of prostaglandins E1 and E2 (PGE) in the cells and the release of LH over similar ranges of concentrations of LH-RH (10−6 to 10−10 mol/l). The peak concentration of PGE was observed after 2·5 h. The stimulation of the level of PGE in the cells by LH-RH was completely inhibited by two inhibitors of prostaglandin synthetase, which only partially inhibited the stimulation of LH release. Therefore the increased concentration of PGE was not obligatory for the effect of LH-RH on LH release. It was also shown that monobutyryl cyclic AMP stimulated the intracellular concentration of PGE and it is suggested that the stimulation of PGE levels may be mediated by increased levels of cyclic AMP in the cells after the addition of LH-RH.


Sign in / Sign up

Export Citation Format

Share Document