Climate response to increasing levels of greenhouse gases and sulphate aerosols

Nature ◽  
1995 ◽  
Vol 376 (6540) ◽  
pp. 501-504 ◽  
Author(s):  
J. F. B. Mitchell ◽  
T. C. Johns ◽  
J. M. Gregory ◽  
S. F. B. Tett
1995 ◽  
Vol 22 (18) ◽  
pp. 2509-2512 ◽  
Author(s):  
Stephen J. Cox ◽  
Wei-Chyung Wang ◽  
Stephen E. Schwartz

Tellus B ◽  
2008 ◽  
Vol 60 (1) ◽  
Author(s):  
Eva Bauer ◽  
Vladimir Petoukhov ◽  
Andrey Ganopolski ◽  
Alexey V. Eliseev

2018 ◽  
Vol 11 (6) ◽  
pp. 2273-2297 ◽  
Author(s):  
Christopher J. Smith ◽  
Piers M. Forster ◽  
Myles Allen ◽  
Nicholas Leach ◽  
Richard J. Millar ◽  
...  

Abstract. Simple climate models can be valuable if they are able to replicate aspects of complex fully coupled earth system models. Larger ensembles can be produced, enabling a probabilistic view of future climate change. A simple emissions-based climate model, FAIR, is presented, which calculates atmospheric concentrations of greenhouse gases and effective radiative forcing (ERF) from greenhouse gases, aerosols, ozone and other agents. Model runs are constrained to observed temperature change from 1880 to 2016 and produce a range of future projections under the Representative Concentration Pathway (RCP) scenarios. The constrained estimates of equilibrium climate sensitivity (ECS), transient climate response (TCR) and transient climate response to cumulative CO2 emissions (TCRE) are 2.86 (2.01 to 4.22) K, 1.53 (1.05 to 2.41) K and 1.40 (0.96 to 2.23) K (1000 GtC)−1 (median and 5–95 % credible intervals). These are in good agreement with the likely Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) range, noting that AR5 estimates were derived from a combination of climate models, observations and expert judgement. The ranges of future projections of temperature and ranges of estimates of ECS, TCR and TCRE are somewhat sensitive to the prior distributions of ECS∕TCR parameters but less sensitive to the ERF from a doubling of CO2 or the observational temperature dataset used to constrain the ensemble. Taking these sensitivities into account, there is no evidence to suggest that the median and credible range of observationally constrained TCR or ECS differ from climate model-derived estimates. The range of temperature projections under RCP8.5 for 2081–2100 in the constrained FAIR model ensemble is lower than the emissions-based estimate reported in AR5 by half a degree, owing to differences in forcing assumptions and ECS∕TCR distributions.


2020 ◽  
Vol 15 (11) ◽  
pp. 114051
Author(s):  
Ivonne M García-Martínez ◽  
Massimo A Bollasina ◽  
Sabine Undorf

2017 ◽  
Author(s):  
Christopher J. Smith ◽  
Piers M. Forster ◽  
Myles Allen ◽  
Nicholas Leach ◽  
Richard J. Millar ◽  
...  

Abstract. Simple climate models can be valuable if they are able to replicate aspects of complex fully coupled earth system models. Larger ensembles can be produced, enabling a probabilistic view of future climate change. A simple emissions-based climate model, FAIR, is presented which calculates atmospheric concentrations of greenhouse gases and effective radiative forcing (ERF) from greenhouse gases, aerosols, ozone precursors and other agents. The ERFs are integrated into global mean surface temperature change. Model runs are constrained to observed temperature change from 1880 to 2016 and produce a range of future projections under the Representative Concentration Pathway (RCP) scenarios. For the historical period the ERF time series in FAIR emulates the results in the IPCC Fifth Assessment Report (AR5), whereas for RCP historical and future scenarios, the greenhouse gas concentrations in FAIR closely track the observations and projections in the RCPs. The constrained estimates of equilibrium climate sensitivity (ECS) of 2.79 (1.97 to 4.08) K, transient climate response (TCR) of 1.47 (1.03 to 2.23) K and transient climate response to cumulative CO2 emissions (TCRE) of 1.43 (1.01 to 2.16) K (1000 GtC)−1 (median and 5–95 % credible intervals) are in good agreement, with tighter uncertainty bounds, than AR5 (1.5 to 4.5 K, 1.0 to 2.5 K, and 0.8 to 2.5 K respectively). The ranges of future projections of temperature and ranges of estimates of ECS, TCR and TCRE are moderately sensitive to the historical temperature dataset used to constrain, prior distributions of ECS/TCR parameters, aerosol radiative forcing relationship and ERF from a doubling of CO2. Taking these sensitivities into account, there is no evidence to suggest that the median and credible range of observationally constrained TCR or ECS differ from climate model-derived estimates. However, the range of temperature projections under the RCP scenarios for 2081–2100 in the constrained FAIR model ensemble are lower than the emissions-based estimates reported in AR5.


2015 ◽  
Vol 28 (24) ◽  
pp. 9746-9767 ◽  
Author(s):  
Michael P. Erb ◽  
Charles S. Jackson ◽  
Anthony J. Broccoli

Abstract The long-term climate variations of the Quaternary were primarily influenced by concurrent changes in Earth’s orbit, greenhouse gases, and ice sheets. However, because climate changes over the coming century will largely be driven by changes in greenhouse gases alone, it is important to better understand the separate contributions of each of these forcings in the past. To investigate this, idealized equilibrium simulations are conducted in which the climate is driven by separate changes in obliquity, precession, CO2, and ice sheets. To test the linearity of past climate change, anomalies from these single-forcing experiments are scaled and summed to compute linear reconstructions of past climate, which are then compared to mid-Holocene and last glacial maximum (LGM) snapshot simulations, where all forcings are applied together, as well as proxy climate records. This comparison shows that much of the climate response may be approximated as a linear response to forcings, while some features, such as modeled changes in sea ice and Atlantic meridional overturning circulation (AMOC), appear to be heavily influenced by nonlinearities. In regions where the linear reconstructions replicate the full-forcing experiments well, this analysis can help identify how each forcing contributes to the climate response. Monsoons at the mid-Holocene respond strongly to precession, while LGM monsoons are heavily influenced by the altered greenhouse gases and ice sheets. Contrary to previous studies, ice sheets produce pronounced tropical cooling at the LGM. Compared to proxy temperature records, the linear reconstructions replicate long-term changes well and also show which climate variations are not easily explained as direct responses to long-term forcings.


Tellus B ◽  
2008 ◽  
Vol 60 (1) ◽  
pp. 82-97 ◽  
Author(s):  
Eva Bauer ◽  
Vladimir Petoukhov ◽  
Andrey Ganopolski ◽  
Alexey V. Eliseev

2012 ◽  
Vol 2 (5) ◽  
pp. 338-341 ◽  
Author(s):  
H. Damon Matthews ◽  
Kirsten Zickfeld

Sign in / Sign up

Export Citation Format

Share Document