T-cell-receptor affinity and thymocyte positive selection

Nature ◽  
1996 ◽  
Vol 381 (6583) ◽  
pp. 616-620 ◽  
Author(s):  
S. Munir Alam ◽  
Paul J. Travers ◽  
Jay L. Wung ◽  
Wade Nasholds ◽  
Stella Redpath ◽  
...  
Nature ◽  
1995 ◽  
Vol 374 (6521) ◽  
pp. 474-476 ◽  
Author(s):  
Klaus-Dieter Fischer ◽  
Antanina Zmuidzinas ◽  
Sandra Gardner ◽  
Mariano Barbacid ◽  
Alan Bernstein ◽  
...  

Author(s):  
Michelle Krogsgaard ◽  
Shi Zhong ◽  
Karolina Malecek ◽  
Laura A Johnson ◽  
Zhiya Yu ◽  
...  

1999 ◽  
Vol 189 (10) ◽  
pp. 1531-1544 ◽  
Author(s):  
Calvin B. Williams ◽  
Deborah L. Engle ◽  
Gilbert J. Kersh ◽  
J. Michael White ◽  
Paul M. Allen

We have developed a unique in vivo system to determine the relationship between endogenous altered peptide ligands and the development of major histocompatibility complex class II– restricted T cells. Our studies use the 3.L2 T cell receptor (TCR) transgenic mouse, in which T cells are specific for Hb(64–76)/I-Ek and positively selected on I-Ek plus self-peptides. To this endogenous peptide repertoire, we have individually added one of six well-characterized 3.L2 ligands. This transgenic approach expands rather than constrains the repertoire of self-peptides. We find that a broad range of ligands produce negative selection of thymocytes in vivo. When compared with the in vitro TCR–ligand binding kinetics, we find that these negatively selecting ligands all have a half-life of 2 s or greater. Additionally, one of two ligands examined with no detectable binding to the 3.L2 TCR and no activity on mature 3.L2 T cells (Q72) enhances the positive selection of transgenic thymocytes in vivo. Together, these data establish a kinetic threshold between negative and positive selection based on the longevity of TCR–ligand complexes.


2020 ◽  
Vol 59 (7) ◽  
pp. 862-870 ◽  
Author(s):  
Michele M. Hoffmann ◽  
Jill E. Slansky

2013 ◽  
Vol 110 (17) ◽  
pp. 6973-6978 ◽  
Author(s):  
S. Zhong ◽  
K. Malecek ◽  
L. A. Johnson ◽  
Z. Yu ◽  
E. Vega-Saenz de Miera ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Philippa Marrack ◽  
Sai Harsha Krovi ◽  
Daniel Silberman ◽  
Janice White ◽  
Eleanor Kushnir ◽  
...  

Mature T cells bearing αβ T cell receptors react with foreign antigens bound to alleles of major histocompatibility complex proteins (MHC) that they were exposed to during their development in the thymus, a phenomenon known as positive selection. The structural basis for positive selection has long been debated. Here, using mice expressing one of two different T cell receptor β chains and various MHC alleles, we show that positive selection-induced MHC bias of T cell receptors is affected both by the germline encoded elements of the T cell receptor α and β chain and, surprisingly, dramatically affected by the non germ line encoded portions of CDR3 of the T cell receptor α chain. Thus, in addition to determining specificity for antigen, the non germline encoded elements of T cell receptors may help the proteins cope with the extremely polymorphic nature of major histocompatibility complex products within the species.


1990 ◽  
Vol 1 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Hung Sia Teh ◽  
Hiroyuki Kishi ◽  
Bernadette Scott ◽  
Peter Borgulya ◽  
Harald Von Boehmer ◽  
...  

The ontogeny of T cells in T-cell receptor (TCR) transgenic mice, which express a transgenicαβheterodimer, specific for the male (H-Y) antigen in association with H-2Db, was determined. The transgenicαchain was expressed on about 10% of the fetal thymocytes on day 14 of gestation. About 50% of day-15 fetal thymocytes expressed bothαandβtranschains and virtually all fetal thymocytes expressed the transgenicαβheterodimer by day 17. The early expression of the transgenic TCR on CD4-8-thymocytes prevented the development ofγδcells, and led to accelerated growth of thymocytes and an earlier expression of CD4 and CD8 molecules. Up to day 17, no significant differences in T-cell development could be detected between female and male thymuses. By day 18 of gestation, the male transgenic thymus contained more CD4-8-thymocytes than the female transgenic thymus. The preponderance of CD4-8-thymocytes in the male transgenic thymus increased until birth and was a consequence of the deletion of the CD4+8+thymocytes and their CD4-8+precursors. By the time of birth, the male transgenic thymus contained half the number of cells as the female transgenic thymus. The deletion of autospecific precursor cells in the male transgenic mouse began only at day 18 of gestation, despite the fact that the ligand could already be detected by day 16.The preferential accumulation of CD4-8+T cells, which expressed a high density of the transgenic TCR, occurred only after birth and was .obvious in 6-week-old female thymus. These data support the hypothesis that the positive selection of T cells expressing this transgenic heterodimer may involve two steps, i.e., the commitment of CD4+8+thymocytes to the CD4-8+lineage following the interaction of the transgenic TCR with restricting major histocompatibility molecules, followed by a slow conversion of CD4+8+thymocytes into CD4-8+T cells.In normal mice, the precursors of CD+4+8 and single positive thymocytes have the CD4-8-CD3-J11d+(or M1/69+) phenotype. Because of the early expression of the transgenicαβheterodimer, this population was not detected in adult transgenic mice. All CD4-8-M1/ 69+cells expressed the transgenic receptor associated with CD3 and could be readily grown in media containing T-cell lectins and interleukin 2.


Sign in / Sign up

Export Citation Format

Share Document