cell receptors
Recently Published Documents


TOTAL DOCUMENTS

1646
(FIVE YEARS 283)

H-INDEX

92
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Jorge Mansilla-Soto ◽  
Justin Eyquem ◽  
Sascha Haubner ◽  
Mohamad Hamieh ◽  
Judith Feucht ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Daichao Wu ◽  
Alexander Kolesnikov ◽  
Rui Yin ◽  
Johnathan D. Guest ◽  
Ragul Gowthaman ◽  
...  

AbstractT cells play a vital role in combatting SARS-CoV-2 and forming long-term memory responses. Whereas extensive structural information is available on neutralizing antibodies against SARS-CoV-2, such information on SARS-CoV-2-specific T-cell receptors (TCRs) bound to their peptide–MHC targets is lacking. Here we determine the structures of a public and a private TCR from COVID-19 convalescent patients in complex with HLA-A2 and two SARS-CoV-2 spike protein epitopes (YLQ and RLQ). The structures reveal the basis for selection of particular TRAV and TRBV germline genes by the public but not the private TCR, and for the ability of the TCRs to recognize natural variants of RLQ but not YLQ. Neither TCR recognizes homologous epitopes from human seasonal coronaviruses. By elucidating the mechanism for TCR recognition of an immunodominant yet variable epitope (YLQ) and a conserved but less commonly targeted epitope (RLQ), this study can inform prospective efforts to design vaccines to elicit pan-coronavirus immunity.


2022 ◽  
Vol 82 ◽  
Author(s):  
A. Cortés ◽  
J. Coral ◽  
C. McLachlan ◽  
J. A. G. Corredor ◽  
R. Benítez

Abstract The coupling of a ligand with a molecular receptor induces a signal that travels through the receptor, reaching the internal domain and triggering a response cascade. In previous work on T-cell receptors and their coupling with foreign antigens, we observed the presence of planar molecular patterns able to generate electromagnetic fields within the proteins. These planes showed a coherent (synchronized) behavior, replicating immediately in the intracellular domain that which occurred in the extracellular domain as the ligand was coupled. In the present study, we examined this molecular transduction - the capacity of the coupling signal to penetrate deep inside the receptor molecule and induce a response. We verified the presence of synchronized behavior in diverse receptor-ligand systems. To appreciate this diversity, we present four biochemically different systems - TCR-peptide, calcium pump-ADP, haemoglobin-oxygen, and gp120-CD4 viral coupling. The confirmation of synchronized molecular transduction in each of these systems suggests that the proposed mechanism would occur in all biochemical receptor-ligand systems.


2021 ◽  
pp. 2109376
Author(s):  
Weizhi Chen ◽  
Yang Yuan ◽  
Cheng Li ◽  
Hui Mao ◽  
Baorui Liu ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Amado Carreras-Sureda ◽  
Laurence Abrami ◽  
Kim Ji-Hee ◽  
Wen-An Wang ◽  
Christopher Henry ◽  
...  

Efficient immune responses require Ca2+ fluxes across ORAI1 channels during engagement of T cell receptors (TCR) at the immune synapse (IS) between T cells and antigen presenting cells. Here, we show that ZDHHC20-mediated S-acylation of the ORAI1 channel at residue Cys143 promotes TCR recruitment and signaling at the IS. Cys143 mutations reduced ORAI1 currents and store-operated Ca2+ entry in HEK-293 cells and nearly abrogated long-lasting Ca2+ elevations, NFATC1 translocation, and IL-2 secretion evoked by TCR engagement in Jurkat T cells. The acylation-deficient channel remained in cholesterol-poor domains upon enforced ZDHHC20 expression and was recruited less efficiently to the IS along with actin and TCR. Our results establish S-acylation as a critical regulator of ORAI1 channel trafficking and function at the IS and reveal that ORAI1 S-acylation enhances TCR recruitment to the synapse.


Sign in / Sign up

Export Citation Format

Share Document