scholarly journals Probucol suppresses human glioma cell proliferation in vitro via ROS production and LKB1-AMPK activation

2014 ◽  
Vol 35 (12) ◽  
pp. 1556-1565 ◽  
Author(s):  
Yong-sheng Jiang ◽  
Jing-an Lei ◽  
Fang Feng ◽  
Qi-ming Liang ◽  
Fu-rong Wang
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Wangsheng Chen ◽  
Lan Hong ◽  
Changlong Hou ◽  
Yibin Wang ◽  
Fei Wang ◽  
...  

Abstract Background MicroRNAs (miRNAs) are important regulators for cancer cell proliferation. miR-585 has been shown to inhibit the proliferation of several types of cancer, however, little is known about its role in human glioma cells. Methods miR-585 levels in human glioma clinical samples and cell lines were examined by quantitative real-time PCR (qRT-PCR) analysis. Cell proliferation was measured by Cell Counting Kit-8 (CCK-8) and EdU incorporation assays in vitro. For in vivo investigations, U251 cells were intracranially inoculated in BALB/c nude mice and xenografted tumors were visualized by magnetic resonance imaging (MRI). Results miR-585 expression is downregulated in human glioma tissues and cell lines compared with non-cancerous counterparts. Additionally, miR-585 overexpression inhibits and its knockdown promotes human glioma cell proliferation in vitro. Moreover, miR-585 overexpression also inhibits the growth of glioma xenografts in vivo, suggesting that miR-585 may act as a tumor suppressor to inhibit the proliferation of human glioma. Furthermore, miR-585 directly targets and decreases the expression of oncoprotein murine double minute 2 (MDM2). More importantly, the restoration of MDM2 via enforced overexpression markedly rescues miR-585 inhibitory effect on human glioma cell proliferation, thus demonstrating that targeting MDM2 is a critical mechanism by which miR-585 inhibits human glioma cell proliferation. Conclusions Our study unveils the anti-proliferative role of miR-585 in human glioma cells, and also implicates its potential application in clinical therapy.


2018 ◽  
Vol 46 (3) ◽  
pp. 1055-1064 ◽  
Author(s):  
Xin Chen ◽  
Deheng Li ◽  
Yang Gao ◽  
Wei Tang ◽  
Lao IW ◽  
...  

Background/Aims: Long noncoding RNAs (lncRNAs) are a novel class of protein-noncoding transcripts that are aberrantly expressed in multiple diseases including cancers. LINC00152 has been identified as an oncogene involved in many kinds of cancer; however, its expression pattern and function in human glioma remain unclear. Methods: Quantitative real-time polymerase chain reaction was carried out to measure LINC00152 expression in human glioma cell lines and tissues. CCK-8 and EdU assays were performed to assess cell proliferation, and scratch assays and Transwell assays were used to assess cell migration and invasion, respectively. Luciferase reporter assays were carried out to determine the interaction between miR-16 and LINC00152. In vivo experiments were conducted to assess tumor formation. Results: LINC00152 was found to be significantly upregulated in human glioma cell lines and clinical samples. Knockdown of LINC00152 suppressed glioma cell proliferation, migration, and invasion in vitro. In vivo assays in nude mice confirmed that LINC00152 knockdown inhibits tumor growth. Furthermore, mechanistic investigation showed that LINC00152 binds to miR-16 in a sequence-specific manner and suppresses its expression. miR-16 inhibition strongly attenuated LINC00152 knockdown–mediated suppressive effects on proliferation, migration, and invasion. Moreover, LINC00152 induced BMI1 expression by sponging miR-16; this effect further promoted glioma cell proliferation and invasion. Conclusion: We regard LINC00152 as an oncogenic lncRNA promoting glioma cell proliferation and invasion and as a potential target for human glioma treatment.


2009 ◽  
Vol 69 (24) ◽  
pp. 9175-9182 ◽  
Author(s):  
Zhengtong Pei ◽  
Peng Sun ◽  
Ping Huang ◽  
Bachchu Lal ◽  
John Laterra ◽  
...  

2013 ◽  
Vol 16 (2) ◽  
pp. 217-227 ◽  
Author(s):  
X. Gu ◽  
L. Yao ◽  
G. Ma ◽  
L. Cui ◽  
Y. Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document