Quantum fluctuations have been shown to affect macroscopic objects

Nature ◽  
2020 ◽  
Vol 583 (7814) ◽  
pp. 31-32
Author(s):  
Valeria Sequino ◽  
Mateusz Bawaj
2018 ◽  
Vol 189 (01) ◽  
pp. 85-94
Author(s):  
Yuri N. Barabanenkov ◽  
Sergej A. Nikitov ◽  
Mikhail Yu. Barabanenkov

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Biswajit Sahoo

Abstract Classical soft photon and soft graviton theorems determine long wavelength electromagnetic and gravitational waveforms for a general classical scattering process in terms of the electric charges and asymptotic momenta of the ingoing and outgoing macroscopic objects. Performing Fourier transformation of the electromagnetic and gravitational waveforms in the frequency variable one finds electromagnetic and gravitational waveforms at late and early retarded time. Here extending the formalism developed in [1], we derive sub-subleading electromagnetic and gravitational waveforms which behave like u−2(ln u) at early and late retarded time u in four spacetime dimensions. We also have derived the sub-subleading soft photon theorem analyzing two loop amplitudes in scalar QED. Finally, we conjectured the structure of leading non-analytic contribution to (sub)n-leading classical soft photon and graviton theorems which behave like u−n(ln u)n−1 for early and late retarded time u.


2012 ◽  
Vol 21 (10) ◽  
pp. 1250080
Author(s):  
JAKUB MIELCZAREK ◽  
MICHAŁ KAMIONKA

In this paper, we investigate power spectrum of a smoothed scalar field. The smoothing leads to regularization of the UV divergences and can be related with the internal structure of the considered field or the space itself. We perform Gaussian smoothing to the quantum fluctuations generated during the phase of cosmic inflation. We study whether this effect can be probed observationally and conclude that the modifications of the power spectrum due to the smoothing on the Planck scale are negligible and far beyond the observational abilities. Subsequently, we investigate whether smoothing in any other form can be probed observationally. We introduce phenomenological smoothing factor e-k2σ2 to the inflationary spectrum and investigate its effects on the spectrum of CMB anisotropies and polarization. We show that smoothing can lead to suppression of high multipoles in the spectrum of the CMB. Based on seven years observations of WMAP satellite we indicate that the present scale of high multipoles suppression is constrained by σ < 3.19 Mpc (95% CL). This corresponds to the constraint σ < 100 μm at the end of inflation. Despite this value is far above the Planck scale, other processes of smoothing can be possibly studied with this constraint, as decoherence or diffusion of primordial perturbations.


2012 ◽  
Vol 85 (4) ◽  
Author(s):  
Marco del Rey ◽  
Carlos Sabín ◽  
Juan León

Sign in / Sign up

Export Citation Format

Share Document