high multipoles
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 1)

2020 ◽  
Vol 499 (4) ◽  
pp. 6094-6104
Author(s):  
Saeed Ansarifard ◽  
S M S Movahed

ABSTRACT We examine cosmological constraints from high-precision weak-lensing surveys including supersample covariance (SSC) due to the finite survey volume. Specifically, we focus on the contribution of beat coupling in the intrinsic alignments as a part of full cosmic shear signal under flat-sky approximation. The SSC-effect grows by going to lower redshift bin and indicates considerable footprint on the intermediate and high multipoles for cumulative signal-to-noise ratio (SNR). The SNR is reduced by $\approx 10{{\ \rm per\ cent}}$ as a consequence of including the intrinsic alignment SSC, for the full cosmic shear signal, depending on the amplitude of intrinsic alignments, the ellipticity dispersion, and the survey redshift ranges, while the contribution of photometric redshift error can be ignored in the cumulative SNR. Using the Fisher-matrix formalism, we find that the impact of large modes beyond the volume of the surveys on the small modes alters the intrinsic alignments. However, corresponding impact on the cosmological parameters’ estimation is marginal compared to that of for gravitational weak lensing, particularly, when all available redshift bins are considered. Our results also demonstrate that including SSC-effect on the intrinsic alignments in the analytical covariance matrix of full cosmic shear leads to increase marginally the confidence interval for σ8 by $\approx 10{{\ \rm per\ cent}}$ for a sample with almost high intrinsic alignment amplitude.


2020 ◽  
Vol 641 ◽  
pp. A5 ◽  
Author(s):  
◽  
N. Aghanim ◽  
Y. Akrami ◽  
M. Ashdown ◽  
J. Aumont ◽  
...  

We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low (ℓ <  30) and high (ℓ ≥ 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases. With more realistic simulations, and better correction and modelling of systematic effects, we can now make full use of the CMB polarization observed in the High Frequency Instrument (HFI) channels. The low-multipole EE cross-spectra from the 100 GHz and 143 GHz data give a constraint on the ΛCDM reionization optical-depth parameter τ to better than 15% (in combination with the TT low-ℓ data and the high-ℓ temperature and polarization data), tightening constraints on all parameters with posterior distributions correlated with τ. We also update the weaker constraint on τ from the joint TEB likelihood using the Low Frequency Instrument (LFI) channels, which was used in 2015 as part of our baseline analysis. At higher multipoles, the CMB temperature spectrum and likelihood are very similar to previous releases. A better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (i.e., the polarization efficiencies) allow us to make full use of polarization spectra, improving the ΛCDM constraints on the parameters θMC, ωc, ωb, and H0 by more than 30%, and ns by more than 20% compared to TT-only constraints. Extensive tests on the robustness of the modelling of the polarization data demonstrate good consistency, with some residual modelling uncertainties. At high multipoles, we are now limited mainly by the accuracy of the polarization efficiency modelling. Using our various tests, simulations, and comparison between different high-multipole likelihood implementations, we estimate the consistency of the results to be better than the 0.5 σ level on the ΛCDM parameters, as well as classical single-parameter extensions for the joint likelihood (to be compared to the 0.3 σ levels we achieved in 2015 for the temperature data alone on ΛCDM only). Minor curiosities already present in the previous releases remain, such as the differences between the best-fit ΛCDM parameters for the ℓ <  800 and ℓ >  800 ranges of the power spectrum, or the preference for more smoothing of the power-spectrum peaks than predicted in ΛCDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations.


2019 ◽  
Vol 74 (4) ◽  
pp. 337-347
Author(s):  
V. V. Pushkarev ◽  
E. K. Majorova ◽  
O. V. Verkhodanov

2018 ◽  
Vol 191 ◽  
pp. 01009
Author(s):  
Rodion Burenin

It is shown that Planck CMB temperature anisotropy data at high multipoles, ℓ > 1000, produce the measurement of matter density perturbations amplitude that contradict to all other constraints obtained both from remaining Planck CMB anisotropy data and from other cosmological data, at about 3:7σ significance level. With the exception of Planck CMB temperature anisotropy data at high multipoles, all other measurements of density perturbation amplitude are in good agreement between each other and give the following measurements of linear density perturbation amplitude: σ8 = 0:792 ± 0:006, mean density of the Universe: Ωm = 0:287 ± 0:007, and Hubble constant: H0 = 69:4 ± 0:6 km s-1 Mpc-1. Therefore, in this case the tensions in H0 constraints between Planck+BAO data and direct H0 measurements are weaken, and the tensions in σ8 measurements between Planck CMB data and large scale structure data disappear completely. Taking in account the data on baryon acoustic oscillations and (or) direct measurements of the Hubble constant, one can obtain different constraints on sum of neutrino mass and number of relativistic species.


2016 ◽  
Vol 26 (06) ◽  
pp. 1750048 ◽  
Author(s):  
Anne Marie Nzioki ◽  
Rituparno Goswami ◽  
Peter K. S. Dunsby

We consider general perturbations of a Schwarzschild black holes in the context of [Formula: see text] gravity. A reduced set of frame independent master variables are determined, which obey two closed wave equations — one for the transverse, trace-free, tensor perturbations and the other for the additional scalar degree of freedom which characterize fourth-order theories of gravity. We show that for the tensor modes, the underlying dynamics in [Formula: see text] gravity is governed by a modified Regge–Wheeler tensor which obeys the same Regge–Wheeler equation as in General Relativity (GR). We find that the possible sources of scalar quasinormal modes (QNMs) that follow from scalar perturbations for the lower multipoles result from primordial black holes, while higher mass, stellar black holes are associated with extremely high multipoles, which can only be produced in the first stage of black hole formation. Since scalar quasinormal modes are short ranged, this scenario makes their detection beyond the range of current experiments.


2012 ◽  
Vol 21 (10) ◽  
pp. 1250080
Author(s):  
JAKUB MIELCZAREK ◽  
MICHAŁ KAMIONKA

In this paper, we investigate power spectrum of a smoothed scalar field. The smoothing leads to regularization of the UV divergences and can be related with the internal structure of the considered field or the space itself. We perform Gaussian smoothing to the quantum fluctuations generated during the phase of cosmic inflation. We study whether this effect can be probed observationally and conclude that the modifications of the power spectrum due to the smoothing on the Planck scale are negligible and far beyond the observational abilities. Subsequently, we investigate whether smoothing in any other form can be probed observationally. We introduce phenomenological smoothing factor e-k2σ2 to the inflationary spectrum and investigate its effects on the spectrum of CMB anisotropies and polarization. We show that smoothing can lead to suppression of high multipoles in the spectrum of the CMB. Based on seven years observations of WMAP satellite we indicate that the present scale of high multipoles suppression is constrained by σ < 3.19 Mpc (95% CL). This corresponds to the constraint σ < 100 μm at the end of inflation. Despite this value is far above the Planck scale, other processes of smoothing can be possibly studied with this constraint, as decoherence or diffusion of primordial perturbations.


Sign in / Sign up

Export Citation Format

Share Document