smoothing factor
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 14)

H-INDEX

7
(FIVE YEARS 1)

JUDICIOUS ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 134-137
Author(s):  
Siti Juriah

PT Kujang Utama Antasena is a shoe industry company specifically for security. The purpose of this study is to forecast or predict sales. This study uses a quantitative method with exponential smoothing, smoothing factor/constant (?) of 0.2. In production activities, forecasting is carried out to determine the amount of demand for a product and is the first step of the production planning and control process to reduce uncertainty so that an estimate that is close to the actual situation is obtained. The exponential smoothing method is a moving average forecasting method that gives exponential or graded weights to the latest data so that the latest data will get a greater weight. In other words, the newer or more current the data, the greater the weight.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhiqiang Liu ◽  
Bo Xu ◽  
Bo Cheng ◽  
Xiaomei Hu

Although DEM occupies an important basic position in spatial analysis, so far, the quality of DEM modeling has still not reached a satisfactory accuracy. This research mainly discusses the influence of interpolation parameters in the inverse distance-weighted interpolation algorithm on the DEM interpolation error. The interpolation parameters to be studied in this paper are the number of search points, the search direction, and the smoothness factor. In order to study the optimization of IDW parameters, the parameters that have uncertain effects on DEM interpolation are found through analysis, such as the number of search points and smoothing factor. This paper designs an experiment for the optimization of the interpolation parameters of the polyhedral function and finds the optimal interpolation parameters through experimental analysis. Of course, the “optimum” here is not the only one, but refers to different terrain areas, which makes the interpolation results relatively good. The selection of search points will be one of the research focuses of this article. After determining the interpolation algorithm, the kernel function is also one of the important factors that affect the accuracy of DEM. The value of the smoothing factor in the kernel function has always been the focus of DEM interpolation research. Different terrains, different interpolations, and functions will have different optimal smoothing factors. The search direction is to ensure that the sampling points are distributed in all directions when the sampling points are sparse and to improve the contribution rate of the sampling points to the interpolation points. The selection of search shape is to improve computing efficiency and has no effect on DEM accuracy; the search radius is mainly controlled by the number of search points, and there are two methods: adaptive search radius and variable length search radius. When the weight coefficient k = 1 , 2 , 3 , 4 , the number of sampling points involved in the interpolation calculation is different, and the error in the residual varies greatly, and both increase with the increase of the number of sampling points in the parameter interpolation calculation. This research will help improve the quality evaluation of DEM.


Author(s):  
Dinh Chung Phan ◽  
Ngọc An Luu

This paper focused on evaluating the application of exponential moving average method into wind turbine to smooth its power output without an energy storage system or an anemometer. Wind turbine control modes including active power control mode and rotor speed control mode are considered. For each control mode, two positions of the Exponential Moving Average method in controller were compared to choose the best position. Additionally, the impact of smoothing factor on wind turbine performance was also considered to determine a reasonable value of the smoothing factor for each control mode. Simulation results in MATLAB/Simulink indicated that, for wind turbine using rotor speed control mode, the Exponential Moving Average method should be applied to reduce the variation of actual rotor speed signal while for wind turbine with the power control mode, it should be used to smooth reference power signal. From the performance of wind turbine with different smoothing factor values, we can suggest that the smoothing factor value should be set at 0.5 and 0.4 for the power control mode and the rotor speed control mode, respectively.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1218
Author(s):  
Adrian Moldovan ◽  
Angel Caţaron ◽  
Răzvan Andonie

Recently, there is a growing interest in applying Transfer Entropy (TE) in quantifying the effective connectivity between artificial neurons. In a feedforward network, the TE can be used to quantify the relationships between neuron output pairs located in different layers. Our focus is on how to include the TE in the learning mechanisms of a Convolutional Neural Network (CNN) architecture. We introduce a novel training mechanism for CNN architectures which integrates the TE feedback connections. Adding the TE feedback parameter accelerates the training process, as fewer epochs are needed. On the flip side, it adds computational overhead to each epoch. According to our experiments on CNN classifiers, to achieve a reasonable computational overhead–accuracy trade-off, it is efficient to consider only the inter-neural information transfer of the neuron pairs between the last two fully connected layers. The TE acts as a smoothing factor, generating stability and becoming active only periodically, not after processing each input sample. Therefore, we can consider the TE is in our model a slowly changing meta-parameter.


Author(s):  
Faten Mashta ◽  
Mohieddin Wainakh ◽  
Wissam Altabban

Spectrum sensing for cognitive radio requires speed and good detection performance at very low SNR ratios. There is no single-stage spectrum sensing technique that is perfect enough to be implemented in practical cognitive radio. In this paper, the authors propose a new parallel fully blind multistage detector. They assume the appropriate stage based on the estimated SNR values that are achieved from the SNR estimator. Energy detection is used in first stage for its simplicity and sensing accuracy at high SNR. For low SNRs, they adopt the maximum eigenvalues detector with different smoothing factor in higher stages. The sensing accuracy for the maximum eigenvalue detector technique improves with higher value of the smoothing factor. However, the computational complexity will increase significantly. They analyze the performance of two cases of the proposed detector: two-stage and three-stage schemes. The simulation results show that the proposed detector improves spectrum sensing in terms of accuracy and speed.


2021 ◽  
Vol 19 (1) ◽  
pp. 225-252
Author(s):  
Liwei Yang ◽  
◽  
Lixia Fu ◽  
Ping Li ◽  
Jianlin Mao ◽  
...  

<abstract> <p>Multi-robot path planning is a hot problem in the field of robotics. Compared with single-robot path planning, complex problems such as obstacle avoidance and mutual collaboration need to be considered. This paper proposes an efficient leader follower-ant colony optimization (LF-ACO) to solve the collaborative path planning problem. Firstly, a new Multi-factor heuristic functor is proposed, the distance factor heuristic function and the smoothing factor heuristic function. This improves the convergence speed of the algorithm and enhances the smoothness of the initial path. The leader-follower structure is reconstructed for the position constraint problem of multi-robots in a grid environment. Then, the pheromone of the leader ant and the follower ants are used in the pheromone update rule of the ACO to improve the search quality of the formation path. To improve the global search capability, a max-min ant strategy is used. Finally, the path is optimized by the turning point optimization algorithm and dynamic cut-point method to improve path quality further. The simulation and experimental results based on MATLAB and ROS show that the proposed method can successfully solve the path planning and formation problem.</p> </abstract>


Author(s):  
Faten Mashta ◽  
Mohieddin Wainakh ◽  
Wissam Altabban

Spectrum sensing in cognitive radio has difficult and complex requirements such as requiring speed and sensing accuracy at very low SNRs. In this paper, the authors propose a novel fully blind sequential multistage spectrum sensing detector to overcome the limitations of single stage detector and make use of the advantages of each detector in each stage. In first stage, energy detection is used because of its simplicity. However, its performance decreases at low SNRs. In second and third stage, the maximum eigenvalues detector is adopted with different smoothing factor in each stage. Maximum eigenvalues detection technique provide good detection performance at low SNRs, but it requires a high computational complexity. In this technique, the probability of detection improves as the smoothing factor raises at the expense of increasing the computational complexity. The simulation results illustrate that the proposed detector has better sensing accuracy than the three individual detectors and a computational complexity lies in between the three individual complexities.


2020 ◽  
Author(s):  
weikang zhu ◽  
jicheng liu

Abstract The path planning is the key technology of AGV path finding. This paper uses an improved ant colony algorithm to plan the path of an AGV. For avoiding the defects of traditional ant colony algorithm such as low smoothness of route and local optimal solution, the transition probability and pheromone update method are improved. Various actual turning situations are analyzed in the transition probability, the basis for defining the smoothing factor is provided by the Bezier curve, and a random selection operator is formed for updating local pheromone by extracting characteristic information of iterative process. The simulation results in different environments prove that the smoothing factor plays an important role in optimizing the smoothness of the path and the diversity of the constructed solutions, and the random selection operator is effective in solving the contradiction of the local optimal solution and in finding the optimal solution.


2020 ◽  
Vol 12 (3) ◽  
pp. 342-347
Author(s):  
Asmaa Maali ◽  
Hayat Semlali ◽  
Sara Laafar ◽  
Najib Boumaaz ◽  
Abdallah Soulmani

Cognitive radio is a technology proposed to increase the effective use of the spectrum. This can be done through the main function of cognitive radio technology, which is the spectrum sensing. In our work, we propose an analysis of the following spectrum sensing techniques: the matched filter detector, the cyclostationary feature detector, the energy detector and the maximum eigenvalue detector. More attention is given to blind sensing techniques that they do not need any knowledge of the primary user signal characteristics, namely the energy detection and maximum eigenvalue detection. These methods are evaluated in terms of Receiver Operational Characteristic curves and detection probability for various values of Signal to Noise Ratio based on Monte Carlo simulations, using MATLAB. As a result of this study, we found that the energy detection offers a good performance only for high SNR. Furthermore, with the maximum eigenvalue detector, the noise uncertainty problem encountered by the energy detection is solved when the value of the smoothing factor L ≥ 8 and. Finally, a summary of the comparative analysis is presented.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-26
Author(s):  
Min-Ying Li ◽  
Kang-Di Lu ◽  
Yu-Xing Dai ◽  
Guo-Qiang Zeng

As the actuator faults in an industrial process cause damage or performance deterioration, the design issue of an optimal controller against these failures is of great importance. In this paper, a fractional-order predictive functional control method based on population extremal optimization is proposed to maintain the control performance against partial actuator failures. The proposed control strategy consists of two key ideas. The first one is the application of fractional-order calculus into the cost function of predictive functional control. Since the knowledge of analytical parameters including the prediction horizon, fractional-order parameter, and smoothing factor in fractional-order predictive functional control is not known, population extremal optimization is employed as the second key technique to search for these parameters. The effectiveness of the proposed controller is examined on two industrial processes, e.g., injection modeling batch process and process flow of coke furnace under constant faults, time-varying faults, and nonrepetitive unknown disturbance. The comprehensive simulation results demonstrate the performance of the proposed control method by comparing with a recently developed predictive functional control, genetic algorithm, and particle swarm optimization-based versions in terms of four performance indices.


Sign in / Sign up

Export Citation Format

Share Document