soft photon
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 19)

H-INDEX

24
(FIVE YEARS 3)

Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1098-1111
Author(s):  
Michael Zacharias

The recent associations of neutrinos with blazars require the efficient interaction of relativistic protons with ambient soft photon fields. However, along side the neutrinos, γ-ray photons are produced, which interact with the same soft photon fields producing electron-positron pairs. The strength of this cascade has significant consequences on the photon spectrum in various energy bands and puts severe constraints on the pion and neutrino production. In this study, we discuss the influence of the external thermal photon fields (accretion disk, broad-line region, and dusty torus) on the proton-photon interactions, employing a newly developed time-dependent one-zone hadro-leptonic code OneHaLe. We present steady-state cases, as well as a time-dependent case, where the emission region moves through the jet. Within the limits of this toy study, the external fields can disrupt the “usual” double-humped blazar spectrum. Similarly, a moving region would cross significant portions of the jet without reaching the previously-found steady states.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Luke Lippstreu

Abstract We generalize Zwanziger’s pairwise little group to include a boost subgroup. We do so by working in the celestial sphere representation of scattering amplitudes. We propose that due to late time soft photon and graviton exchanges, matter particles in the asymptotic states in massless QED and gravity transform under the Poincaré group with an additional pair of pairwise celestial representations for each pair of matter particles. We demonstrate that the massless abelian and gravitational exponentiation theorems are consistent with the proposed pairwise Poincaré transformation properties. For massless QED we demonstrate that our results are consistent with the effects of the Faddeev-Kulish dressing and the abelian exponentiation theorem for celestial amplitudes found in arXiv:2012.04208. We discuss electric and magnetic charges simultaneously as it is especially natural to do so in this formalism.


2021 ◽  
Vol 104 (7) ◽  
Author(s):  
Matthias Heller ◽  
Niklas Keil ◽  
Marc Vanderhaeghen

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Thomas T. Dumitrescu ◽  
Temple He ◽  
Prahar Mitra ◽  
Andrew Strominger

Abstract We establish the existence of an infinite-dimensional fermionic symmetry in four-dimensional supersymmetric gauge theories by analyzing semiclassical photino dynamics in abelian $$ \mathcal{N} $$ N = 1 theories with charged matter. The symmetry is parametrized by a spinor-valued function on an asymptotic S2 at null infinity. It is not manifest at the level of the Lagrangian, but acts non-trivially on physical states, and its Ward identity is the soft photino theorem. The infinite-dimensional fermionic symmetry resides in the same $$ \mathcal{N} $$ N = 1 supermultiplet as the physically non-trivial large gauge symmetries associated with the soft photon theorem.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
A. Manu ◽  
Debodirna Ghosh ◽  
Alok Laddha ◽  
P. V. Athira

Abstract We apply the recently developed formalism by Kosower, Maybee and O’Connell (KMOC) [12] to analyse the soft electromagnetic and soft gravitational radiation emitted by particles without spin in D ≥ 4 dimensions. We use this formalism in conjunction with quantum soft theorems to derive radiative electro-magnetic and gravitational fields in low frequency expansion and upto next to leading order in the coupling. We show that in all dimensions, the classical limit of sub-leading soft (photon and graviton) theorems is consistent with the classical soft theorems proved by Sen et al. in a series of papers. In particular in [11] Saha, Sahoo and Sen proved classical soft theorems for electro-magnetic and gravitational radiation in D = 4 dimensions. For the class of scattering processes that can be analyzed using KMOC formalism, we show that the classical limit of quantum soft theorems is consistent with the D = 4 classical soft theorems, paving the way for their proof from scattering amplitudes.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Sayali Atul Bhatkar

Abstract We obtain the subleading tail to the memory term in the late time electromagnetic radiative field generated due to a generic scattering of charged bodies. We show that there exists a new asymptotic conservation law which is related to the subleading tail term. The corresponding charge is made of a mode of the asymptotic electromagnetic field that appears at $$ \mathcal{O} $$ O (e5) and we expect that it is uncorrected at higher orders. This hints that the subleading tail arises from classical limit of a 2-loop soft photon theorem. Building on the m = 1 [41, 42] and m = 2 cases, we propose that there exists a conservation law for every m such that the respective charge involves an $$ \mathcal{O} $$ O (e2m+1) mode and is conserved exactly. This would imply a hierarchy of an infinite number of m-loop soft theorems. We also predict the structure of mth order tails to the memory term that are tied to the classical limit of these soft theorems.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Temple He ◽  
Prahar Mitra

Abstract Previous analyses of asymptotic symmetries in QED have shown that the subleading soft photon theorem implies a Ward identity corresponding to a charge generating divergent large gauge transformations on the asymptotic states at null infinity. In this work, we demonstrate that the subleading soft photon theorem is equivalent to a more general Ward identity. The charge corresponding to this Ward identity can be decomposed into an electric piece and a magnetic piece. The electric piece generates the Ward identity that was previously studied, but the magnetic piece is novel, and implies the existence of an additional asymptotic “magnetic” symmetry in QED.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Biswajit Sahoo

Abstract Classical soft photon and soft graviton theorems determine long wavelength electromagnetic and gravitational waveforms for a general classical scattering process in terms of the electric charges and asymptotic momenta of the ingoing and outgoing macroscopic objects. Performing Fourier transformation of the electromagnetic and gravitational waveforms in the frequency variable one finds electromagnetic and gravitational waveforms at late and early retarded time. Here extending the formalism developed in [1], we derive sub-subleading electromagnetic and gravitational waveforms which behave like u−2(ln u) at early and late retarded time u in four spacetime dimensions. We also have derived the sub-subleading soft photon theorem analyzing two loop amplitudes in scalar QED. Finally, we conjectured the structure of leading non-analytic contribution to (sub)n-leading classical soft photon and graviton theorems which behave like u−n(ln u)n−1 for early and late retarded time u.


2020 ◽  
Vol 1690 ◽  
pp. 012035
Author(s):  
E Kokoulina ◽  
N Barlykov ◽  
A Gribovsky ◽  
V Dudin ◽  
V Dunin ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document