scholarly journals Legislation in the genomic era: the Affordable Care Act and genetic testing for cancer risk assessment

2015 ◽  
Vol 17 (12) ◽  
pp. 962-964 ◽  
Author(s):  
Farzana L. Walcott ◽  
Barbara K. Dunn
2002 ◽  
Vol 21 (6) ◽  
pp. 564-572 ◽  
Author(s):  
David Cella ◽  
Chanita Hughes ◽  
Amy Peterman ◽  
Chih-Hung Chang ◽  
Beth N. Peshkin ◽  
...  

2018 ◽  
Vol 132 (5) ◽  
pp. 1121-1129 ◽  
Author(s):  
Mark S. DeFrancesco ◽  
Richard N. Waldman ◽  
Melissa M. Pearlstone ◽  
Dana Karanik ◽  
Ryan Bernhisel ◽  
...  

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 1525-1525
Author(s):  
Gregory Idos ◽  
Allison W. Kurian ◽  
Charite Nicolette Ricker ◽  
Duveen Sturgeon ◽  
Julie Culver ◽  
...  

1525 Background: Genetic testing is a powerful tool for stratifying cancer risk. Multiplex gene panel (MGP) testing allows simultaneous analysis of multiple high- and moderate- penetrance genes. However, the diagnostic yield and clinical utility of panels remain to be further delineated. Methods: A report of a fully accrued trial (N = 2000) of patients undergoing cancer-risk assessment. Patients were enrolled in a multicenter prospective cohort study where diagnostic yield and off-target mutation detection was evaluated of a 25 gene MGP comprised of APC, ATM, BARD1, BMPR1A, BRCA1, BRCA2, BRIP1, CDH1, CDK4, CDKN2A, CHEK2, EPCAM, MLH1, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD51C, RAD51D, SMAD4, STK11, TP53. Patients were enrolled if they met standard testing guidelines or were predicted to have a ≥2.5% mutation probability by validated models. Differential diagnoses (DDx) were generated after expert clinical genetics assessment, formulating up to 8 inherited cancer syndromes ranked by estimated likelihood. Results: 1998/2000 patients had reported MGP test results. Women constituted 81% of the sample, and 40% were Hispanic; 241 tested positive for at least 1 pathogenic mutation (12.1%) and 689 (34.5%) patients carried at least 1 variant of uncertain significance. The most frequently identified mutations were in BRCA1 (17%, n = 41), BRCA2 (15%, n = 36), APC (8%, n = 19), CHEK2 (7%, n = 17), ATM (7%, n = 16). 39 patients (16%) had at least 1 pathogenic mutation in a mismatch repair (MMR) gene ( MLH1, n = 10; MSH2, n = 10; MSH6, n = 8; PMS2, n = 11). 43 individuals (18%) had MUTYH mutations – 41 were monoallelic. Among 19 patients who had mutations in APC – 16 were APC I1307K. Only 65% (n = 159) of PV results were included in the DDx, with 35% (n = 86) of mutations not clinically suspected. Conclusions: In a diverse cohort, multiplex panel use increased genetic testing yield substantially: 35% carried pathogenic mutations in unsuspected genes, suggesting a significant contribution of expanded multiplex testing to clinical cancer risk assessment. The identification of off-target mutations broadens our understanding of cancer risk and genotype-phenotype correlations. Follow-up is ongoing to assess the clinical utility of multiplex gene panel testing. Clinical trial information: NCT02324062.


2016 ◽  
Vol 29 (04) ◽  
pp. 345-352
Author(s):  
Khateriaa Pyrtel

AbstractColorectal cancer is the third most common cancer diagnosed in the United States with up to 3% of cases being attributable to a hereditary polyposis syndrome. Established diagnostic and/or testing criteria exist for many of the recognized polyposis syndromes and are an important tool in guiding physicians in the identification of individuals who may benefit from referral to a cancer genetics service for hereditary cancer risk assessment. A formal hereditary cancer risk assessment supports fulfillment of obligations for standard of care, as well as minimizes the negative outcomes that may occur in the absence of informed consent for genetic testing. The implications of a diagnosis may extend beyond the individual patient to include at-risk relatives, and as such, much emphasis should be placed on identifying the most informative individual in a family in which to initiate testing. Advances in our understanding of genes associated with hereditary polyposis and the increasing use of testing that relies on next-generation sequencing technologies may lead to the increased likelihood of a genetic diagnosis; however, in those individuals without a genetic diagnosis whose histories remain concerning for hereditary polyposis, knowledge of family history may inform strategies for early detection and prevention.


2010 ◽  
Vol 138 (5) ◽  
pp. S-297
Author(s):  
Caroline Hwang ◽  
Elana B. Mitchel ◽  
Reem Z. Sharaiha ◽  
Wendy Chung ◽  
Harold Frucht

Sign in / Sign up

Export Citation Format

Share Document