Expanded yield of multiplex panel testing in fully accrued prospective trial.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 1525-1525
Author(s):  
Gregory Idos ◽  
Allison W. Kurian ◽  
Charite Nicolette Ricker ◽  
Duveen Sturgeon ◽  
Julie Culver ◽  
...  

1525 Background: Genetic testing is a powerful tool for stratifying cancer risk. Multiplex gene panel (MGP) testing allows simultaneous analysis of multiple high- and moderate- penetrance genes. However, the diagnostic yield and clinical utility of panels remain to be further delineated. Methods: A report of a fully accrued trial (N = 2000) of patients undergoing cancer-risk assessment. Patients were enrolled in a multicenter prospective cohort study where diagnostic yield and off-target mutation detection was evaluated of a 25 gene MGP comprised of APC, ATM, BARD1, BMPR1A, BRCA1, BRCA2, BRIP1, CDH1, CDK4, CDKN2A, CHEK2, EPCAM, MLH1, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD51C, RAD51D, SMAD4, STK11, TP53. Patients were enrolled if they met standard testing guidelines or were predicted to have a ≥2.5% mutation probability by validated models. Differential diagnoses (DDx) were generated after expert clinical genetics assessment, formulating up to 8 inherited cancer syndromes ranked by estimated likelihood. Results: 1998/2000 patients had reported MGP test results. Women constituted 81% of the sample, and 40% were Hispanic; 241 tested positive for at least 1 pathogenic mutation (12.1%) and 689 (34.5%) patients carried at least 1 variant of uncertain significance. The most frequently identified mutations were in BRCA1 (17%, n = 41), BRCA2 (15%, n = 36), APC (8%, n = 19), CHEK2 (7%, n = 17), ATM (7%, n = 16). 39 patients (16%) had at least 1 pathogenic mutation in a mismatch repair (MMR) gene ( MLH1, n = 10; MSH2, n = 10; MSH6, n = 8; PMS2, n = 11). 43 individuals (18%) had MUTYH mutations – 41 were monoallelic. Among 19 patients who had mutations in APC – 16 were APC I1307K. Only 65% (n = 159) of PV results were included in the DDx, with 35% (n = 86) of mutations not clinically suspected. Conclusions: In a diverse cohort, multiplex panel use increased genetic testing yield substantially: 35% carried pathogenic mutations in unsuspected genes, suggesting a significant contribution of expanded multiplex testing to clinical cancer risk assessment. The identification of off-target mutations broadens our understanding of cancer risk and genotype-phenotype correlations. Follow-up is ongoing to assess the clinical utility of multiplex gene panel testing. Clinical trial information: NCT02324062.

2015 ◽  
Vol 33 (15_suppl) ◽  
pp. 1513-1513
Author(s):  
Leif W. Ellisen ◽  
Allison W. Kurian ◽  
Andrea J Desmond ◽  
Meredith Mills ◽  
Stephen E Lincoln ◽  
...  

2015 ◽  
Vol 33 (28_suppl) ◽  
pp. 16-16
Author(s):  
Nimmi S. Kapoor ◽  
Lisa D. Curcio ◽  
Carlee A. Blakemore ◽  
Amy K. Bremner ◽  
Rachel E. McFarland ◽  
...  

16 Background: Recently introduced multi-gene panel testing including BRCA1 and BRCA2 genes (BRCA1/2) for hereditary cancer risk has raised concerns with the ability to detect all deleterious BRCA1/2 mutations compared to older methods of sequentially testing BRCA1/2 separately. The purpose of this study is to evaluate rates of pathogenic BRCA1/2mutations and variants of uncertain significance (VUS) between previous restricted algorithms of genetic testing and newer approaches of multi-gene testing. Methods: Data was collected retrospectively from 966 patients who underwent genetic testing at one of three sites from a single institution. Test results were compared between patients who underwent BRCA1/2testing only (limited group, n = 629) to those who underwent multi-gene testing with 5-43 cancer-related genes (panel group, n = 337). Results: Deleterious BRCA1/2 mutations were identified in 37 patients, with equivalent rates between limited and panel groups (4.0% vs 3.6%, respectively, p = 0.86). Thirty-nine patients had a BRCA1/2 VUS, with similar rates between limited and panel groups (4.5% vs 3.3%, respectively, p = 0.49). On multivariate analysis, there was no difference in detection of either BRCA1/2 mutations or VUS between both groups. Of patients undergoing panel testing, an additional 3.9% (n = 13) had non-BRCA pathogenic mutations and 13.4% (n = 45) had non-BRCA VUSs. Mutations in PALB2, CHEK2, and ATM were the most common non-BRCA mutations identified. Conclusions: Multi-gene panel testing detects pathogenic BRCA1/2 mutations at equivalent rates as limited testing and increases the diagnostic yield. Panel testing increases the VUS rate, mainly due to non-BRCA genes. Patients at risk for hereditary breast cancer can safely benefit from upfront, more efficient, multi-gene panel testing.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 1523-1523
Author(s):  
Gregory Idos ◽  
Katherine G Roth ◽  
Leah Naghi ◽  
Charite Nicolette Ricker ◽  
Julie Culver ◽  
...  

1523 Background: Mutation carrier prediction models are clinically useful tools for identifying candidates for genetic counseling and testing. Consensus guidelines recommend germline genetic testing for those with a carrier probability (CP) of approximately 5% or higher. However, prediction models may perform less well among racial/ethnic minorities. Our hypothesis is that pathogenic mutations (PM) are identifiable in a clinically meaningful fraction of racially/ethnically diverse patients with a CP of < 5%. Methods: We conducted a multicenter prospective clinical trial of patients undergoing cancer-risk assessment using a 25 gene panel, which include APC, ATM, BARD1, BMPR1A, BRCA1, BRCA2, BRIP1, CDH1, CDK4, CDKN2A, CHEK2, EPCAM, MLH1, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD51C, RAD51D, SMAD4, STK11, TP53. Patients were recruited from August 2014 to November 2016 at three centers. Patients were enrolled if they met standard clinical criteria for genetic testing or were predicted to have a ≥2.5% probability of inherited cancer susceptibility using validated prediction models. We evaluated the CP of patients with a PM in BRCA1, BRCA2, and/or a mismatch repair (MMR) gene using the following models: (1) BRCApro, (2) MMRpro and (3) PREMM1,2,6. Results: Of 2000 patients enrolled in this cohort, 80.6% are female (n = 1612). Regarding race/ethnicity, the cohort is 40.1% Non-Hispanic White (n = 802), 37.4% Hispanic (n = 748), 11.5% Asian (n = 230), 3.9% Black (n = 78), and 7.1% Other (n = 142). Among 241 (12.1%) patients who tested positive for a pathogenic mutation, 76 (31.5%) patients had a BRCA1 or BRCA2 mutation. Of those, 52 (68.4%) patients had a BRCApro CP of < 5%. Thirty-eight (15.8%) patients had a pathogenic mutation in an MMR gene: 19 (50.0%) had an MMRpro CP of < 5%, while 13 (34.2%) had a PREMM1,2,6 CP of < 5%. The racial/ethnic distribution of BRCA1/2 or MMR mutation carriers is similar to that of the whole cohort. Conclusions: In a diverse cohort of patients undergoing 25-gene multiple-gene panel testing, half or more carriers of BRCA1/2 or MMR mutations had a CP of < 5%, the consensus guideline-recommended cutoff for genetic testing. These results support a lower threshold for genetic testing guidelines. Clinical trial information: NCT02324062.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e13013-e13013
Author(s):  
Shan Yang ◽  
Scott T. Michalski ◽  
Daniel Esteban Pineda Alvarez ◽  
Stephen E Lincoln ◽  
Pat W. Whitworth ◽  
...  

e13013 Background: Over 608,000 patients with ovarian, breast, pancreatic, prostate and colorectal cancer are diagnosed each year. NCCN guidelines recommend offering germline genetic testing to all patients with ovarian and pancreatic cancer, and patients with prostate and breast cancer who meet specific criteria. We present data from ~113,000 patients who were tested on a comprehensive multigene panel and compare the diagnostic yield and clinical actionability with that of a limited gene panel strategy. Methods: We analyzed de-identified sequence data for 83 cancer-risk genes in patients with breast, ovarian, prostate and pancreatic cancer referred for germline genetic testing. Positive rates for a minimal gene panel for the respective indication were computed and compared to the positive rates when the comprehensive 83 gene panel was analyzed. Results: Four percent of 103,428 patients with breast, ovarian, pancreatic and prostate cancer harbored a BRCA1 or BRCA2 germline mutation including: breast 3.7%, ovarian 8.2%, prostate 5.2% and pancreatic 4.2%. When the comprehensive panel is applied, the overall diagnostic yield for all 113,107 patients increased to 16%. Excluding mono-allelic P/LP variants in recessive cancer-risk genes (e.g. MUTYH) reduces the diagnostic yield to 13%. Stratified by cancer type, and removing mono-allelic recessives, positive yield was: breast 11.8%, ovarian 18%, prostate 15%, and pancreatic 16%. Conclusions: These data show that comprehensive panel testing in patients with a broad range of cancers more than doubles the diagnostic yield, providing actionable results for an additional 9,737 per 113,107 patients tested. Potential germline-based clinical actionability for these patients includes: 1) pan-cancer eligibility for PARP inhibitor clinical trials, 2) FDA approved PD1 blockade for advanced cancer of ANY type and a molecular diagnosis of Lynch syndrome, 3) cascade family variant testing.This study suggests that genetic testing guidelines should be expanded to include recommendations supporting multigene panel testing in patients with cancer to improve the care of patients and their family members.


2021 ◽  
Author(s):  
Elke M. van Veen ◽  
D. Gareth Evans ◽  
Elaine F. Harkness ◽  
Helen J. Byers ◽  
Jamie M. Ellingford ◽  
...  

AbstractPurpose: Lobular breast cancer (LBC) accounts for ~ 15% of breast cancer. Here, we studied the frequency of pathogenic germline variants (PGVs) in an extended panel of genes in women affected with LBC. Methods: 302 women with LBC and 1567 without breast cancer were tested for BRCA1/2 PGVs. A subset of 134 LBC affected women who tested negative for BRCA1/2 PGVs underwent extended screening, including: ATM, CDH1, CHEK2, NBN, PALB2, PTEN, RAD50, RAD51D, and TP53.Results: 35 PGVs were identified in the group with LBC, of which 22 were in BRCA1/2. Ten actionable PGVs were identified in additional genes (ATM(4), CDH1(1), CHEK2(1), PALB2(2) and TP53(2)). Overall, PGVs in three genes conferred a significant increased risk for LBC. Odds ratios (ORs) were: BRCA1: OR = 13.17 (95%CI 2.83–66.38; P = 0.0017), BRCA2: OR = 10.33 (95%CI 4.58–23.95; P < 0.0001); and ATM: OR = 8.01 (95%CI 2.52–29.92; P = 0.0053). We did not detect an increased risk of LBC for PALB2, CDH1 or CHEK2. Conclusion: The overall PGV detection rate was 11.59%, with similar rates of BRCA1/2 (7.28%) PGVs as for other actionable PGVs (7.46%), indicating a benefit for extended panel genetic testing in LBC. We also report a previously unrecognised association of pathogenic variants in ATM with LBC.


2021 ◽  
Vol 132 (2) ◽  
pp. S98
Author(s):  
Guillermo Seratti ◽  
Vikram Pansare ◽  
Tiffany Yar Pang ◽  
Emanuela Izzo ◽  
William Mackenzie ◽  
...  

2021 ◽  
Vol 132 ◽  
pp. S201
Author(s):  
Guillermo Seratti ◽  
Tiffany Pang ◽  
Vikram Pansare ◽  
Emanuela Izzo ◽  
William Mackenzie ◽  
...  

2002 ◽  
Vol 21 (6) ◽  
pp. 564-572 ◽  
Author(s):  
David Cella ◽  
Chanita Hughes ◽  
Amy Peterman ◽  
Chih-Hung Chang ◽  
Beth N. Peshkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document