scholarly journals Distinct flavobacterial communities in contrasting water masses of the North Atlantic Ocean

2010 ◽  
Vol 4 (4) ◽  
pp. 472-487 ◽  
Author(s):  
Paola R Gómez-Pereira ◽  
Bernhard M Fuchs ◽  
Cecilia Alonso ◽  
Matthew J Oliver ◽  
Justus E E van Beusekom ◽  
...  
2001 ◽  
Vol 106 (C4) ◽  
pp. 6881-6894 ◽  
Author(s):  
H. N. Edmonds ◽  
Z. Q. Zhou ◽  
G. M. Raisbeck ◽  
F. Yiou ◽  
L. Kilius ◽  
...  

2018 ◽  
Vol 15 (18) ◽  
pp. 5663-5676 ◽  
Author(s):  
Jill N. Sutton ◽  
Gregory F. de Souza ◽  
Maribel I. García-Ibáñez ◽  
Christina L. De La Rocha

Abstract. The stable isotope composition of dissolved silicon in seawater (δ30SiDSi) was examined at 10 stations along the GEOVIDE section (GEOTRACES GA-01), spanning the North Atlantic Ocean (40–60∘ N) and Labrador Sea. Variations in δ30SiDSi below 500 m were closely tied to the distribution of water masses. Higher δ30SiDSi values are associated with intermediate and deep water masses of northern Atlantic or Arctic Ocean origin, whilst lower δ30SiDSi values are associated with DSi-rich waters sourced ultimately from the Southern Ocean. Correspondingly, the lowest δ30SiDSi values were observed in the deep and abyssal eastern North Atlantic, where dense southern-sourced waters dominate. The extent to which the spreading of water masses influences the δ30SiDSi distribution is marked clearly by Labrador Sea Water (LSW), whose high δ30SiDSi signature is visible not only within its region of formation within the Labrador and Irminger seas, but also throughout the mid-depth western and eastern North Atlantic Ocean. Both δ30SiDSi and hydrographic parameters document the circulation of LSW into the eastern North Atlantic, where it overlies southern-sourced Lower Deep Water. The GEOVIDE δ30SiDSi distribution thus provides a clear view of the direct interaction between subpolar/polar water masses of northern and southern origin, and allow examination of the extent to which these far-field signals influence the local δ30SiDSi distribution.


2020 ◽  
Author(s):  
Caroline Katsman ◽  
Nils Brüggemann ◽  
Sotiria Georgiou ◽  
Juan-Manuel Sayol Espana ◽  
Stefanie Ypma ◽  
...  

<p>In the North Atlantic Ocean, intense downward motions connect the upper and lower limbs of the Atlantic Meridional Overturning Circulation (AMOC). In addition, the AMOC also displays a pronounced signature in density space, with lighter waters moving northward and denser waters returning southward.</p><p>While at first glance it is appealing to associate this sinking of water masses in the North Atlantic Ocean with the occurrence of the formation of dense water masses by deep convection, this is not correct: the net vertical motion over convection areas is small. The downward flow required to connect the upper and lower branches of the AMOC thus has to occur outside the deep convection areas. Indeed, earlier studies have pointed out theoretically that strong sinking can only occur close to continental boundaries, where ageostrophic processes play a role. However, observations clearly indicate that convected water masses formed in marginals seas constitute an important component of the lower limb of the AMOC.</p><p>This apparent contradiction is explored in this presentation, by studying the overturning in the AMOC from a perspective in depth space (Eulerian downwelling) and density space (downwelling across isopycnals). Based on analyses of both a high-resolution global ocean model and dedicated process studies using idealized models we analyze the characteristics of the sinking, of diapycnal mixing, and investigate how these are linked. </p><p>It appears that eddies play a crucial role for the overturning, both in depth space and density space. They control the characteristics of the yearly cycle of convection and restratification, the magnitude of the Eulerian sinking near continental boundaries, and steer the export of dense waters formed in the interior of the marginal seas via the boundary current system.</p><p>These studies thus reveal a complex three-dimensional view on sinking, diapycnal water mass transformation and overturning in the North Atlantic Ocean, involving the boundary current, the interior and interactions with the eddy field.  This implies that it is essential to resolve these eddies to be able to properly represent the overturning in depth and density space in the North Atlantic Ocean and its response to changing conditions in a future climate.</p>


2018 ◽  
Vol 612 ◽  
pp. 1141-1148 ◽  
Author(s):  
Min Zhang ◽  
Yuanling Zhang ◽  
Qi Shu ◽  
Chang Zhao ◽  
Gang Wang ◽  
...  

2021 ◽  
Vol 56 (7-8) ◽  
pp. 2027-2056
Author(s):  
Sandra M. Plecha ◽  
Pedro M. M. Soares ◽  
Susana M. Silva-Fernandes ◽  
William Cabos

Eos ◽  
1986 ◽  
Vol 67 (44) ◽  
pp. 835 ◽  
Author(s):  
W. E. Esaias ◽  
G. C. Feldman ◽  
C. R. McClain ◽  
J. A. Elrod

Sign in / Sign up

Export Citation Format

Share Document