scholarly journals Nerve Fibers Containing Neuropeptide Y in the Cerebrovascular Bed: Immunocytochemistry, Radioimmunoassay, and Vasomotor Effects

1987 ◽  
Vol 7 (1) ◽  
pp. 45-57 ◽  
Author(s):  
L. Edvinsson ◽  
J. R. Copeland ◽  
P. C. Emson ◽  
J. McCulloch ◽  
R. Uddman

Perivascular nerve fibers containing neuropeptide Y (NPY)-like immunoreactivity were identified around cerebral blood vessels of human, cat, guinea pig, rat, and mouse. The major cerebral arteries were invested by dense plexuses; veins, small arteries, and arterioles were accompanied by few fibers. Removal of the superior cervical ganglion resulted in a reduction of NPY-like material in pial vessels and dura mater. Pretreatment with 6-hydroxydopamine or reserpine reduced the number of visible NPY fibers and the concentration of NPY in rat cerebral vessels. Sequential immuno-staining with antibodies toward dopamine-β-hydroxylase (DBH) (an enzyme involved in the synthesis of noradrenaline) and NPY revealed an identical localization of DBH and NPY in nerve cell bodies in the superior cervical ganglion and in perivascular fibers of pial blood vessels, suggesting their coexistence. Administration of NPY in vitro resulted in concentration-dependent contractions that were not modified by a sympathectomy. The contractions induced by noradrenaline, 5-hydroxytryptamine, and prostaglandin F2α and the dilator responses to calcitonin gene-related peptide were not modified by NPY in rat cerebral arteries. However, the constrictor response to NPY was reduced by 70% in the presence of the calcium entry blocker nifedipine, and abolished following incubation in a calcium-free buffer. These data suggest an interaction of NPY at a postsynaptic site, which for induction of contraction may open calcium channels in the sarcolemma of cerebral arteries.

Cephalalgia ◽  
1986 ◽  
Vol 6 (2) ◽  
pp. 81-86 ◽  
Author(s):  
Michael A Moskowitz ◽  
Lisa R Brezina ◽  
Christine Kuo

This is the first report demonstrating the existence of opiate-containing nerve fibers surrounding brain blood vessels. Dynorphin B, a tridecapeptide and potent opiate analgesic, was visualized by immunohistochemistry in guinea pig cerebral arteries comprising the circle of Willis and was measured by radioimmunoassay in canine middle cerebral arteries. This peptide, reportedly present in dorsal root ganglion cells, was observed by others to decrease the depolarization-induced release of substance P from primary sensory axons and, by so doing, to retard the development of neurogenic inflammation in target tissues. Consistent with an indirect action of dynorphin B, this peptide did not relax precontracted canine middle cerebral or basilar artery segments when added in vitro, nor did it modulate receptor-mediated relaxation on the addition of substance P. The presence of opiate-containing axons in or near trigeminovascular nerve fibers suggests novel mechanisms related to the modulation of pain possibly emanating from cerebral vessels.


Author(s):  
D. M. DePace

The majority of blood vessels in the superior cervical ganglion possess a continuous endothelium with tight junctions. These same features have been associated with the blood brain barrier of the central nervous system and peripheral nerves. These vessels may perform a barrier function between the capillary circulation and the superior cervical ganglion. The permeability of the blood vessels in the superior cervical ganglion of the rat was tested by intravenous injection of horseradish peroxidase (HRP). Three experimental groups of four animals each were given intravenous HRP (Sigma Type II) in a dosage of.08 to.15 mg/gm body weight in.5 ml of.85% saline. The animals were sacrificed at five, ten or 15 minutes following administration of the tracer. Superior cervical ganglia were quickly removed and fixed by immersion in 2.5% glutaraldehyde in Sorenson's.1M phosphate buffer, pH 7.4. Three control animals received,5ml of saline without HRP. These were sacrificed on the same time schedule. Tissues from experimental and control animals were reacted for peroxidase activity and then processed for routine transmission electron microscopy.


2001 ◽  
Vol 1 ◽  
pp. 168-180 ◽  
Author(s):  
Lars Edvinsson ◽  
Peter J. Goadsby ◽  
Rolf Uddman

Amylin and adrenomedullin are two peptides structurally related to calcitonin gene-related peptide (CGRP). We studied the occurrence of amylin in trigeminal ganglia and cerebral blood vessels of the cat with immunocytochemistry and evaluated the role of amylin and adrenomedullin in the cerebral circulation by in vitro and in vivo pharmacology. Immunocytochemistry revealed that numerous nerve cell bodies in the trigeminal ganglion contained CGRP immunoreactivity (-ir); some of these also expressed amylin-ir but none adrenomedullin-ir. There were numerous nerve fibres surrounding cerebral blood vessels that contained CGRP-ir. Occasional fibres contained amylin-ir while we observed no adrenomedullin-ir in the vessel walls. With RT-PCR and Real-Time�PCR we revealed the presence of mRNA for calcitonin receptor-like receptor (CLRL) and receptor-activity-modifying proteins (RAMPs) in cat cerebral arteries. In vitro studies revealed that amylin, adrenomedullin, and CGRP relaxed ring segments of the cat middle cerebral artery. CGRP and amylin caused concentration-dependent relaxations at low concentrations of PGF2a-precontracted segment (with or without endothelium) whereas only at high concentration did adrenomedullin cause relaxation. CGRP8-37 blocked the CGRP and amylin induced relaxations in a parallel fashion. In vivo studies of amylin, adrenomedullin, and CGRP showed a brisk reproducible increase in local cerebral blood flow as examined using laser Doppler flowmetry applied to the cerebral cortex of the a-chloralose�anesthetized cat. The responses to amylin and CGRP were blocked by CGRP8-37. The studies suggest that there is a functional sub-set of amylin-containing trigeminal neurons which probably act via CGRP receptors.


1904 ◽  
Vol 73 (488-496) ◽  
pp. 99-99
Author(s):  
John Newport Langley ◽  
Hugh Kerr Anderson

It is well known that the cervical sympathetic nerve and the chorda tympani have opposite actions upon the blood-vessels of the sub-maxillary gland, the former causing contraction of the vessels, and the latter, dilatation. Evidence has been given by one of us that the chorda tympani if united with the cervical sympathetic, can in time make connection with the nerve cells of the superior cervical ganglion and become in part vaso-constrictor fibres. Our experiments have been directed to determine whether the cervical sympathetic if allowed an opportunity of becoming connected with the peripheral nerve cells in the course of the chorda tympani will in part change their function from vaso-constrictor to vaso-dilator. Two experiments were made on anæsthetised cats, both give similar results, but one was much more conclusive on the point at issue than the other, and here we shall speak of that only. The superior cervical ganglion was excised and the central end of the cervical sympathetic nerve was joined to the peripheral end of the lingual, which contains the chorda tympani fibres. After allowing time for union and regeneration of the nerves, the cervical sympathetic was stimulated; it caused prompt flushing of the sub-maxillary glands, and the effect was repeatedly obtained.


1997 ◽  
Vol 273 (6) ◽  
pp. E1194-E1202 ◽  
Author(s):  
Thomas O. Mundinger ◽  
C. Bruce Verchere ◽  
Denis G. Baskin ◽  
Michael R. Boyle ◽  
Stephan Kowalyk ◽  
...  

Stimulation of canine hepatic nerves releases the neuropeptide galanin from the liver; therefore, galanin may be a sympathetic neurotransmitter in the dog liver. To test this hypothesis, we used immunocytochemistry to determine if galanin is localized in hepatic sympathetic nerves and we used hepatic sympathetic denervation to verify such localization. Liver sections from dogs were immunostained for both galanin and the sympathetic enzyme marker tyrosine hydroxylase (TH). Galanin-like immunoreactivity (GALIR) was colocalized with TH in many axons of nerve trunks as well as individual nerve fibers located both in the stroma of hepatic blood vessels and in the liver parenchyma. Neither galanin- nor TH-positive cell bodies were observed. Intraportal 6-hydroxydopamine (6-OHDA) infusion, a treatment that selectively destroys hepatic adrenergic nerve terminals, abolished the GALIR staining in parenchymal neurons but only moderately diminished the GALIR staining in the nerve fibers around blood vessels. To confirm that 6-OHDA pretreatment proportionally depleted galanin and norepinephrine in the liver, we measured both the liver content and the hepatic nerve-stimulated spillover of galanin and norepinephrine from the liver. Pretreatment with 6-OHDA reduced the content and spillover of both galanin and norepinephrine by >90%. Together, these results indicate that galanin in dog liver is primarily colocalized with norepinephrine in sympathetic nerves and may therefore function as a hepatic sympathetic neurotransmitter.


Sign in / Sign up

Export Citation Format

Share Document