scholarly journals Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection

2006 ◽  
Vol 2 (1) ◽  
Author(s):  
Tomoya Baba ◽  
Takeshi Ara ◽  
Miki Hasegawa ◽  
Yuki Takai ◽  
Yoshiko Okumura ◽  
...  
2019 ◽  
Vol 201 (19) ◽  
Author(s):  
Darren J. Parker ◽  
Pınar Demetci ◽  
Gene-Wei Li

ABSTRACTExpression of motility genes is a potentially beneficial but costly process in bacteria. Interestingly, many isolate strains ofEscherichia colipossess motility genes but have lost the ability to activate them under conditions in which motility is advantageous, raising the question of how they respond to these situations. Through transcriptome profiling of strains in theE. colisingle-gene knockout Keio collection, we noticed drastic upregulation of motility genes in many of the deletion strains compared to levels in their weakly motile parent strain (BW25113). We show that this switch to a motile phenotype is not a direct consequence of the genes deleted but is instead due to a variety of secondary mutations that increase the expression of the major motility regulator, FlhDC. Importantly, we find that this switch can be reproduced by growing poorly motileE. colistrains in nonshaking liquid medium overnight but not in shaking liquid medium. Individual isolates after the nonshaking overnight incubations acquired distinct mutations upstream of theflhDCoperon, including different insertion sequence (IS) elements and, to a lesser extent, point mutations. The rapidity with which genetic changes sweep through the populations grown without shaking shows that poorly motile strains can quickly adapt to a motile lifestyle by genetic rewiring.IMPORTANCEThe ability to tune gene expression in times of need outside preordained regulatory networks is an essential evolutionary process that allows organisms to survive and compete. Here, we show that upon overnight incubation in liquid medium without shaking, populations of largely nonmotileEscherichia colibacteria can rapidly accumulate mutants that have constitutive motility. This effect contributes to widespread secondary mutations in the single-gene knockout library, the Keio collection. As a result, 49/71 (69%) of the Keio strains tested exhibited various degrees of motility, whereas their parental strain is poorly motile. These observations highlight the plasticity of gene expression even in the absence of preexisting regulatory programs and should raise awareness of procedures for handling laboratory strains ofE. coli.


2010 ◽  
Vol 87 (2) ◽  
pp. 647-655 ◽  
Author(s):  
Ying Zhou ◽  
Takeshi Minami ◽  
Kohsuke Honda ◽  
Takeshi Omasa ◽  
Hisao Ohtake

DNA Repair ◽  
2010 ◽  
Vol 9 (9) ◽  
pp. 949-957 ◽  
Author(s):  
Elinne Becket ◽  
Frank Chen ◽  
Cindy Tamae ◽  
Jeffrey H. Miller

2008 ◽  
Vol 190 (17) ◽  
pp. 5981-5988 ◽  
Author(s):  
Cindy Tamae ◽  
Anne Liu ◽  
Katherine Kim ◽  
Daniel Sitz ◽  
Jeeyoon Hong ◽  
...  

ABSTRACT We have tested the entire Keio collection of close to 4,000 single-gene knockouts in Escherichia coli for increased susceptibility to one of seven different antibiotics (ciprofloxacin, rifampin, vancomycin, ampicillin, sulfamethoxazole, gentamicin, or metronidazole). We used high-throughput screening of several subinhibitory concentrations of each antibiotic and reduced more than 65,000 data points to a set of 140 strains that display significantly increased sensitivities to at least one of the antibiotics, determining the MIC in each case. These data provide targets for the design of “codrugs” that can potentiate existing antibiotics. We have made a number of double mutants with greatly increased sensitivity to ciprofloxacin, and these overcome the resistance generated by certain gyrA mutations. Many of the gene knockouts in E. coli are hypersensitive to more than one antibiotic. Together, all of these data allow us to outline the cell's “intrinsic resistome,” which provides innate resistance to antibiotics.


Sign in / Sign up

Export Citation Format

Share Document