scholarly journals Active site remodelling accompanies thioester bond formation in the SUMO E1

Nature ◽  
2010 ◽  
Vol 463 (7283) ◽  
pp. 906-912 ◽  
Author(s):  
Shaun K. Olsen ◽  
Allan D. Capili ◽  
Xuequan Lu ◽  
Derek S. Tan ◽  
Christopher D. Lima
Science ◽  
2019 ◽  
Vol 364 (6442) ◽  
pp. 787-792 ◽  
Author(s):  
Miles H. Black ◽  
Adam Osinski ◽  
Marcin Gradowski ◽  
Kelly A. Servage ◽  
Krzysztof Pawłowski ◽  
...  

Enzymes with a protein kinase fold transfer phosphate from adenosine 5′-triphosphate (ATP) to substrates in a process known as phosphorylation. Here, we show that the Legionella meta-effector SidJ adopts a protein kinase fold, yet unexpectedly catalyzes protein polyglutamylation. SidJ is activated by host-cell calmodulin to polyglutamylate the SidE family of ubiquitin (Ub) ligases. Crystal structures of the SidJ-calmodulin complex reveal a protein kinase fold that catalyzes ATP-dependent isopeptide bond formation between the amino group of free glutamate and the γ-carboxyl group of an active-site glutamate in SidE. We show that SidJ polyglutamylation of SidE, and the consequent inactivation of Ub ligase activity, is required for successful Legionella replication in a viable eukaryotic host cell.


2019 ◽  
Vol 47 (14) ◽  
pp. 7147-7162 ◽  
Author(s):  
Adele Williamson ◽  
Hanna-Kirsti S Leiros

Abstract DNA ligases join adjacent 5′ phosphate (5′P) and 3′ hydroxyl (3′OH) termini of double-stranded DNA via a three-step mechanism requiring a nucleotide cofactor and divalent metal ion. Although considerable structural detail is available for the first two steps, less is known about step 3 where the DNA-backbone is joined or about the cation role at this step. We have captured high-resolution structures of an adenosine triphosphate (ATP)-dependent DNA ligase from Prochlorococcus marinus including a Mn-bound pre-ternary ligase–DNA complex poised for phosphodiester bond formation, and a post-ternary intermediate retaining product DNA and partially occupied AMP in the active site. The pre-ternary structure unambiguously identifies the binding site of the catalytic metal ion and confirms both its role in activating the 3′OH terminus for nucleophilic attack on the 5′P group and stabilizing the pentavalent transition state. The post-ternary structure indicates that DNA distortion and most enzyme-AMP contacts remain after phosphodiester bond formation, implying loss of covalent linkage to the DNA drives release of AMP, rather than active site rearrangement. Additionally, comparisons of this cyanobacterial DNA ligase with homologs from bacteria and bacteriophage pose interesting questions about the structural origin of double-strand break joining activity and the evolution of these ATP-dependent DNA ligase enzymes.


RSC Advances ◽  
2015 ◽  
Vol 5 (100) ◽  
pp. 82199-82207 ◽  
Author(s):  
S. M. Abdul Shakoor ◽  
Sunita Choudhary ◽  
Kiran Bajaj ◽  
Manoj Kumar Muthyala ◽  
Anil Kumar ◽  
...  

An efficient and recyclable imidazolium-supported benzotriazole reagent (Im-CH2-BtH) as a novel synthetic auxiliary has been synthesized and explored for its carboxyl group activating capability for the synthesis of amides, esters and thioesters in water.


2020 ◽  
Vol 117 (13) ◽  
pp. 7276-7283 ◽  
Author(s):  
Victor S. Lelyveld ◽  
Wen Zhang ◽  
Jack W. Szostak

All known polymerases copy genetic material by catalyzing phosphodiester bond formation. This highly conserved activity proceeds by a common mechanism, such that incorporated nucleoside analogs terminate chain elongation if the resulting primer strand lacks a terminal hydroxyl group. Even conservatively substituted 3′-amino nucleotides generally act as chain terminators, and no enzymatic pathway for their polymerization has yet been found. Although 3′-amino nucleotides can be chemically coupled to yield stable oligonucleotides containing N3′→P5′ phosphoramidate (NP) bonds, no such internucleotide linkages are known to occur in nature. Here, we report that 3′-amino terminated primers are, in fact, slowly extended by the DNA polymerase from B. stearothermophilus in a template-directed manner. When its cofactor is Ca2+ rather than Mg2+, the reaction is fivefold faster, permitting multiple turnover NP bond formation to yield NP-DNA strands from the corresponding 3′-amino-2′,3′-dideoxynucleoside 5′-triphosphates. A single active site mutation further enhances the rate of NP-DNA synthesis by an additional 21-fold. We show that DNA-dependent NP-DNA polymerase activity depends on conserved active site residues and propose a likely mechanism for this activity based on a series of crystal structures of bound complexes. Our results significantly broaden the catalytic scope of polymerase activity and suggest the feasibility of a genetic transition between native nucleic acids and NP-DNA.


Sign in / Sign up

Export Citation Format

Share Document