ubiquitin ligases
Recently Published Documents


TOTAL DOCUMENTS

918
(FIVE YEARS 244)

H-INDEX

98
(FIVE YEARS 10)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 250
Author(s):  
Germana Meroni ◽  
Solange Desagher

The field of the Tripartite Motif (TRIM) family has progressively attracted increasing interest during the last two decades [...]


Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 165
Author(s):  
Peter Kolesar ◽  
Karel Stejskal ◽  
David Potesil ◽  
Johanne M. Murray ◽  
Jan J. Palecek

Structural Maintenance of Chromosomes (SMC) complexes are important for many aspects of the chromosomal organization. Unlike cohesin and condensin, the SMC5/6 complex contains a variant RING domain carried by its Nse1 subunit. RING domains are characteristic for ubiquitin ligases, and human NSE1 has been shown to possess ubiquitin-ligase activity in vitro. However, other studies were unable to show such activity. Here, we confirm Nse1 ubiquitin-ligase activity using purified Schizosaccharomyces pombe proteins. We demonstrate that the Nse1 ligase activity is stimulated by Nse3 and Nse4. We show that Nse1 specifically utilizes Ubc13/Mms2 E2 enzyme and interacts directly with ubiquitin. We identify the Nse1 mutation (R188E) that specifically disrupts its E3 activity and demonstrate that the Nse1-dependent ubiquitination is particularly important under replication stress. Moreover, we determine Nse4 (lysine K181) as the first known SMC5/6-associated Nse1 substrate. Interestingly, abolition of Nse4 modification at K181 leads to suppression of DNA-damage sensitivity of other SMC5/6 mutants. Altogether, this study brings new evidence for Nse1 ubiquitin ligase activity, significantly advancing our understanding of this enigmatic SMC5/6 function.


2022 ◽  
pp. 11-40
Author(s):  
Patrícia Maria Siqueira dos Passos ◽  
Camila Rolemberg Santana Travaglini Berti de Correia ◽  
Caio Almeida Batista de Oliveira ◽  
Valentine Spagnol ◽  
Isabela Fernanda Morales Martins ◽  
...  

2021 ◽  
Vol 22 (24) ◽  
pp. 13658
Author(s):  
Jae Ho Kim ◽  
Moon Seok Kim ◽  
Dae Yeon Kim ◽  
Joseph Noble Amoah ◽  
Yong Weon Seo

Plant U-box E3 ubiquitin ligase (PUB) is involved in various environmental stress conditions. However, the molecular mechanism of U-box proteins in response to abiotic stress in wheat remains unknown. In this study, two U-box E3 ligase genes (TaPUB2 and TaPUB3), which are highly expressed in response to adverse abiotic stresses, were isolated from common wheat, and their cellular functions were characterized under drought stress. Transient expression assay revealed that TaPUB2 was localized in the cytoplasm and Golgi apparatus, whereas TaPUB3 was expressed only in the Golgi apparatus in wheat protoplasts. Additionally, TaPUB2 and TaPUB3 underwent self-ubiquitination. Moreover, TaPUB2/TaPUB3 heterodimer was identified in yeast and the cytoplasm of wheat protoplasts using a pull-down assay and bimolecular fluorescence complementation analysis. Heterogeneous overexpression of TaPUB2 and TaPUB3 conferred tolerance to drought stress. Taken together, these results implied that the heterodimeric form of U-box E3 ubiquitin ligases (TaPUB2/TaPUB3) responded to abiotic stress and roles as a positive regulator of drought stress tolerance.


2021 ◽  
Author(s):  
Zeynep Tarcan ◽  
Divyasree Poovathumkadavil ◽  
Aggeliki Skagia ◽  
Agnieszka Gambus

Complex cellular processes are driven by the regulated assembly and disassembly of large multi-protein complexes. In eukaryotic DNA replication, whilst we are beginning to understand the molecular mechanism for assembly of the replication machinery (replisome), we still know relatively little about the regulation of its disassembly at replication termination. Over recent years, the first elements of this process have emerged, revealing that the replicative helicase, at the heart of the replisome, is polyubiquitylated prior to unloading and that this unloading requires p97 segregase activity. Two different E3 ubiquitin ligases are now known to ubiquitylate the helicase under different conditions: Cul2Lrr1 and TRAIP. Here we have found two p97 cofactors, Ubxn7 and Faf1, which can interact with p97 during replisome disassembly in S-phase. Only Ubxn7 however facilitates efficient replisome disassembly through its interaction with both Cul2Lrr1 and p97. Our data therefore characterise Ubxn7 as the first substrate-specific p97 cofactor regulating replisome disassembly in vertebrates.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haoran Cui ◽  
Yaxian Zhang ◽  
Leiliang Zhang

Poxviruses have evolved a variety of innate immunity evasion mechanisms, some of which involve poxvirus-encoded E3 ubiquitin ligases and adaptor proteins. Based on their functional domains and ubiquitin transfer mechanisms, these poxvirus-encoded E3 ubiquitin ligases and adaptor proteins can be divided into five categories: PRANC, ANK/BC, BBK, P28/RING, and MARCH proteins. Although the substrates of many poxvirus E3 ubiquitin ligases remain to be discovered, most of the identified substrates are components of the innate immune system. In this review, we discuss the current research progress on poxvirus-encoded E3 ubiquitin ligases and adaptor proteins to provide mechanistic insights into the interplay between these viruses and their hosts.


2021 ◽  
Vol 12 ◽  
Author(s):  
Min Zou ◽  
Qi-Shan Zeng ◽  
Jiao Nie ◽  
Jia-Hui Yang ◽  
Zhen-Yi Luo ◽  
...  

Inflammatory bowel disease (IBD), which include Crohn’s disease (CD) and ulcerative colitis (UC), exhibits a complex multifactorial pathogenesis involving genetic susceptibility, imbalance of gut microbiota, mucosal immune disorder and environmental factors. Recent studies reported associations between ubiquitination and deubiquitination and the occurrence and development of inflammatory bowel disease. Ubiquitination modification, one of the most important types of post-translational modifications, is a multi-step enzymatic process involved in the regulation of various physiological processes of cells, including cell cycle progression, cell differentiation, apoptosis, and innate and adaptive immune responses. Alterations in ubiquitination and deubiquitination can lead to various diseases, including IBD. Here, we review the role of E3 ubiquitin ligases and deubiquitinases (DUBs) and their mediated ubiquitination and deubiquitination modifications in the pathogenesis of IBD. We highlight the importance of this type of posttranslational modification in the development of inflammation, and provide guidance for the future development of targeted therapeutics in IBD.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1821
Author(s):  
Carolyn Allain Breckel ◽  
Mark Hochstrasser

The diverse functions of proteins depend on their proper three-dimensional folding and assembly. Misfolded cellular proteins can potentially harm cells by forming aggregates in their resident compartments that can interfere with vital cellular processes or sequester important factors. Protein quality control (PQC) pathways are responsible for the repair or destruction of these abnormal proteins. Most commonly, the ubiquitin-proteasome system (UPS) is employed to recognize and degrade those proteins that cannot be refolded by molecular chaperones. Misfolded substrates are ubiquitylated by a subset of ubiquitin ligases (also called E3s) that operate in different cellular compartments. Recent research in Saccharomyces cerevisiae has shown that the most prominent ligases mediating cytoplasmic and nuclear PQC have overlapping yet distinct substrate specificities. Many substrates have been characterized that can be targeted by more than one ubiquitin ligase depending on their localization, and cytoplasmic PQC substrates can be directed to the nucleus for ubiquitylation and degradation. Here, we review some of the major yeast PQC ubiquitin ligases operating in the nucleus and cytoplasm, as well as current evidence indicating how these ligases can often function redundantly toward substrates in these compartments.


DNA Repair ◽  
2021 ◽  
Vol 108 ◽  
pp. 103217
Author(s):  
Bo-Ruei Chen ◽  
Yinan Wang ◽  
Zih-Jie Shen ◽  
Amelia Bennett ◽  
Issa Hindi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document