dna ligases
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 18)

H-INDEX

36
(FIVE YEARS 4)

2021 ◽  
Author(s):  
◽  
Janine Sharma

<p>DNA ligases are fundamental enzymes in molecular biology and biotechnology where they perform essential reactions, e.g. to create recombinant DNA and for adaptor attachment in next-generation sequencing. T4 DNA ligase is the most widely used commercial ligase owing to its ability to catalyse ligation of blunt-ended DNA termini. However, even for T4 DNA ligase, blunt-end ligation is an inefficient activity compared to cohesive-end ligation, or its evolved activity of sealing single-strand nicks in double-stranded DNA. Previous research from Dr Wayne Patrick showed that fusion of T4 DNA ligase to a DNA-binding domain increases the enzyme’s affinity for DNA substrates, resulting in improved ligation efficiency. It was further shown that changes to the linker region between the ligase and DNA-binding domain resulted in altered ligation activity. To assist in optimising this relationship, we designed a competitive ligase selection protocol to enrich for engineered ligase variants with greater blunt-end ligation activity. This selection involves expressing a DNA ligase from its plasmid construct, and ligating a linear form of its plasmid, sealing a double-strand DNA break in the chloramphenicol resistance gene, permitting bacterial growth. Previous researcher Dr Katherine Robins created two linker libraries of 33 and 37 variants, from lead candidate ligase-cTF and (the less active form of p50-ligase variant) ligase-p50, respectively. Five rounds of selection were applied to each library. One linker variant, denoted ligase-CA3 showed the greatest improvement, comprising 42% of the final selected ligase-cTF population. In contrast, a lead linker variant from the ligase-p50 library was not obtained. In this study one additional round of selection was applied to the ligase-p50 library to test whether a lead variant would emerge. However, the linker variants selected at the end of Round 6 did not suggest a clear lead candidate, so one of the top variants (ligase-PPA17) was selected to represent this population in a fluorescence-based ligation assay that I optimised. Following identification of optimal reaction buffers to improve protein stability and DNA ligation, six engineered variants were compared for blunt-, cohesive-end, and nick sealing ligation activities. All five engineered variants exhibited improved blunt-end ligation activity over T4 DNA ligase. Ligase-PPA17 (1.9-fold improvement over T4 DNA ligase) was best performing for blunt-end ligation. This study found no evidence that ligase-CA3 was significantly improved over its predecessor, ligase-cTF in blunt-end ligation, however it was the best performing variant at cohesive-end ligation. Overall, we have evolved DNA ligase variants with improved blunt-end ligation activity over T4 DNA ligase which may be more advantageous in molecular biology and biotechnology for a variety of applications.</p>


2021 ◽  
Author(s):  
◽  
Janine Sharma

<p>DNA ligases are fundamental enzymes in molecular biology and biotechnology where they perform essential reactions, e.g. to create recombinant DNA and for adaptor attachment in next-generation sequencing. T4 DNA ligase is the most widely used commercial ligase owing to its ability to catalyse ligation of blunt-ended DNA termini. However, even for T4 DNA ligase, blunt-end ligation is an inefficient activity compared to cohesive-end ligation, or its evolved activity of sealing single-strand nicks in double-stranded DNA. Previous research from Dr Wayne Patrick showed that fusion of T4 DNA ligase to a DNA-binding domain increases the enzyme’s affinity for DNA substrates, resulting in improved ligation efficiency. It was further shown that changes to the linker region between the ligase and DNA-binding domain resulted in altered ligation activity. To assist in optimising this relationship, we designed a competitive ligase selection protocol to enrich for engineered ligase variants with greater blunt-end ligation activity. This selection involves expressing a DNA ligase from its plasmid construct, and ligating a linear form of its plasmid, sealing a double-strand DNA break in the chloramphenicol resistance gene, permitting bacterial growth. Previous researcher Dr Katherine Robins created two linker libraries of 33 and 37 variants, from lead candidate ligase-cTF and (the less active form of p50-ligase variant) ligase-p50, respectively. Five rounds of selection were applied to each library. One linker variant, denoted ligase-CA3 showed the greatest improvement, comprising 42% of the final selected ligase-cTF population. In contrast, a lead linker variant from the ligase-p50 library was not obtained. In this study one additional round of selection was applied to the ligase-p50 library to test whether a lead variant would emerge. However, the linker variants selected at the end of Round 6 did not suggest a clear lead candidate, so one of the top variants (ligase-PPA17) was selected to represent this population in a fluorescence-based ligation assay that I optimised. Following identification of optimal reaction buffers to improve protein stability and DNA ligation, six engineered variants were compared for blunt-, cohesive-end, and nick sealing ligation activities. All five engineered variants exhibited improved blunt-end ligation activity over T4 DNA ligase. Ligase-PPA17 (1.9-fold improvement over T4 DNA ligase) was best performing for blunt-end ligation. This study found no evidence that ligase-CA3 was significantly improved over its predecessor, ligase-cTF in blunt-end ligation, however it was the best performing variant at cohesive-end ligation. Overall, we have evolved DNA ligase variants with improved blunt-end ligation activity over T4 DNA ligase which may be more advantageous in molecular biology and biotechnology for a variety of applications.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jolyn Pan ◽  
Kjersti Lian ◽  
Aili Sarre ◽  
Hanna-Kirsti S. Leiros ◽  
Adele Williamson

AbstractDNA ligases, the enzymes responsible for joining breaks in the phosphodiester backbone of DNA during replication and repair, vary considerably in size and structure. The smallest members of this enzyme class carry out their functions with pared-down protein scaffolds comprising only the core catalytic domains. Here we use sequence similarity network analysis of minimal DNA ligases from all biological super kingdoms, to investigate their evolutionary origins, with a particular focus on bacterial variants. This revealed that bacterial Lig C sequences cluster more closely with Eukaryote and Archaeal ligases, while bacterial Lig E sequences cluster most closely with viral sequences. Further refinement of the latter group delineates a cohesive cluster of canonical Lig E sequences that possess a leader peptide, an exclusively bacteriophage group of T7 DNA ligase homologs and a group with high similarity to the Chlorella virus DNA ligase which includes both bacterial and viral enzymes. The structure and function of the bacterially-encoded Chlorella virus homologs were further investigated by recombinantly producing and characterizing, the ATP-dependent DNA ligase from Burkholderia pseudomallei as well as determining its crystal structure in complex with DNA. This revealed that the enzyme has similar activity characteristics to other ATP-dependent DNA ligases, and significant structural similarity to the eukaryotic virus Chlorella virus including the positioning and DNA contacts of the binding latch region. Analysis of the genomic context of the B. pseudomallei ATP-dependent DNA ligase indicates it is part of a lysogenic bacteriophage present in the B. pseudomallei chromosome representing one likely entry point for the horizontal acquisition of ATP-dependent DNA ligases by bacteria.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2508
Author(s):  
Arqam Alomari ◽  
Robert Gowland ◽  
Callum Southwood ◽  
Jak Barrow ◽  
Zoe Bentley ◽  
...  

Present in all organisms, DNA ligases catalyse the formation of a phosphodiester bond between a 3′ hydroxyl and a 5′ phosphate, a reaction that is essential for maintaining genome integrity during replication and repair. Eubacterial DNA ligases use NAD+ as a cofactor and possess low sequence and structural homology relative to eukaryotic DNA ligases which use ATP as a cofactor. These key differences enable specific targeting of bacterial DNA ligases as an antibacterial strategy. In this study, four small molecule accessible sites within functionally important regions of Escherichia coli ligase (EC-LigA) were identified using in silico methods. Molecular docking was then used to screen for small molecules predicted to bind to these sites. Eight candidate inhibitors were then screened for inhibitory activity in an in vitro ligase assay. Five of these (geneticin, chlorhexidine, glutathione (reduced), imidazolidinyl urea and 2-(aminomethyl)imidazole) showed dose-dependent inhibition of EC-LigA with half maximal inhibitory concentrations (IC50) in the micromolar to millimolar range (11–2600 µM). Two (geneticin and chlorhexidine) were predicted to bind to a region of EC-LigA that has not been directly investigated previously, raising the possibility that there may be amino acids within this region that are important for EC-LigA activity or that the function of essential residues proximal to this region are impacted by inhibitor interactions with this region. We anticipate that the identified small molecule binding sites and inhibitors could be pursued as part of an antibacterial strategy targeting bacterial DNA ligases.


Placenta ◽  
2021 ◽  
Vol 106 ◽  
pp. 7-14
Author(s):  
Peng-Fen Li ◽  
Yun-Gai Xiang ◽  
Dan Zhang ◽  
Na Lu ◽  
Qian Dou ◽  
...  

2020 ◽  
Vol 48 (22) ◽  
pp. 12746-12750
Author(s):  
Bailin Zhao ◽  
Tasmin Naila ◽  
Michael R Lieber ◽  
Alan E Tomkinson

Abstract As nucleotidyl transferases, formation of a covalent enzyme-adenylate intermediate is a common first step of all DNA ligases. While it has been shown that eukaryotic DNA ligases utilize ATP as the adenylation donor, it was recently reported that human DNA ligase IV can also utilize NAD+ and, to a lesser extent ADP-ribose, as the source of the adenylate group and that NAD+, unlike ATP, enhances ligation by supporting multiple catalytic cycles. Since this unexpected finding has significant implications for our understanding of the mechanisms and regulation of DNA double strand break repair, we attempted to confirm that NAD+ and ADP-ribose can be used as co-factors by human DNA ligase IV. Here, we provide evidence that NAD+ does not enhance ligation by pre-adenylated DNA ligase IV, indicating that this co-factor is not utilized for re-adenylation and subsequent cycles of ligation. Moreover, we find that ligation by de-adenylated DNA ligase IV is dependent upon ATP not NAD+ or ADP-ribose. Thus, we conclude that human DNA ligase IV cannot use either NAD+ or ADP-ribose as adenylation donor for ligation.


DNA Repair ◽  
2020 ◽  
Vol 93 ◽  
pp. 102908 ◽  
Author(s):  
Annahita Sallmyr ◽  
Ishtiaque Rashid ◽  
Seema Khattri Bhandari ◽  
Tasmin Naila ◽  
Alan E. Tomkinson
Keyword(s):  

2020 ◽  
Author(s):  
Erik Hjerde ◽  
Ashleigh Maguren ◽  
Elizabeth Rzoska-Smith ◽  
Bronwyn Kirby ◽  
Adele Williamson

AbstractDNA ligases, essential enzymes which re-join the backbone of DNA come in two structurally-distinct isoforms, NAD-dependent and ATP-dependent, which differ in cofactor usage. The present view is that all bacteria exclusively use NAD-dependent DNA ligases for DNA replication, while archaea and eukaryotes use ATP-dependent DNA ligases. Some bacteria also possess auxiliary ATP-dependent DNA ligases; however, these are only employed for specialist DNA repair processes. Here we show that in the genomes of high-light strains of the marine cyanobacterium Prochlorococcocus marinus, an ATP-dependent DNA ligase has replaced the NAD-dependent form, overturning the present paradigm of a clear evolutionary split in ligase usage. Genes encoding partial NAD-dependent DNA ligases are found on mobile regions in highlight genomes and lack domains required for catalytic function. This constitutes the first reported example of a bacterium that relies on an ATP-dependent DNA ligase for DNA replication and recommends P. marinus as a model to investigate the evolutionary origins of these essential DNA-processing enzymes.


2020 ◽  
Vol 19 (5-6) ◽  
pp. 377-389
Author(s):  
Mohd Amir ◽  
Taj Mohammad ◽  
Ravins Dohare ◽  
Asimul Islam ◽  
Faizan Ahmad ◽  
...  

Abstract Oligonucleotide/oligosaccharide-binding (OB)-fold proteins play essential roles in the regulation of genome and its correct transformation to the subsequent generation. To maintain the genomic stability, OB-fold proteins are implicated in various cellular processes including DNA replication, DNA repair, cell cycle regulation and maintenance of telomere. The diverse functional spectrums of OB-fold proteins are mainly due to their involvement in protein–DNA and protein–protein complexes. Mutations and consequential structural alteration in the OB-fold proteins often lead to severe diseases. Here, we have investigated the structure, function and mode of action of OB-fold proteins (RPA, BRCA2, DNA ligases and SSBs1/2) in cellular pathways and their relationship with diseases and their possible use in therapeutic intervention. Due to the crucial role of OB-fold proteins in regulating the key physiological process, a detailed structural understanding in the context of underlying mechanism of action and cellular complexity offers a new avenue to target OB-proteins for therapeutic intervention.


2020 ◽  
Vol 48 (15) ◽  
pp. 8225-8242 ◽  
Author(s):  
Adele Williamson ◽  
Hanna-Kirsti S Leiros

Abstract DNA ligases are diverse enzymes with essential functions in replication and repair of DNA; here we review recent advances in their structure and distribution and discuss how this contributes to understanding their biological roles and technological potential. Recent high-resolution crystal structures of DNA ligases from different organisms, including DNA-bound states and reaction intermediates, have provided considerable insight into their enzymatic mechanism and substrate interactions. All cellular organisms possess at least one DNA ligase, but many species encode multiple forms some of which are modular multifunctional enzymes. New experimental evidence for participation of DNA ligases in pathways with additional DNA modifying enzymes is defining their participation in non-redundant repair processes enabling elucidation of their biological functions. Coupled with identification of a wealth of DNA ligase sequences through genomic data, our increased appreciation of the structural diversity and phylogenetic distribution of DNA ligases has the potential to uncover new biotechnological tools and provide new treatment options for bacterial pathogens.


Sign in / Sign up

Export Citation Format

Share Document