JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage

2005 ◽  
Vol 7 (3) ◽  
pp. 278-285 ◽  
Author(s):  
Kiyotsugu Yoshida ◽  
Tomoko Yamaguchi ◽  
Tohru Natsume ◽  
Donald Kufe ◽  
Yoshio Miki
2006 ◽  
Vol 25 (16) ◽  
pp. 3774-3783 ◽  
Author(s):  
Deepak Raina ◽  
Rehan Ahmad ◽  
Shailendra Kumar ◽  
Jian Ren ◽  
Kiyotsugu Yoshida ◽  
...  

2009 ◽  
Vol 285 (7) ◽  
pp. 4909-4919 ◽  
Author(s):  
Naoe Taira ◽  
Hiroyuki Yamamoto ◽  
Tomoko Yamaguchi ◽  
Yoshio Miki ◽  
Kiyotsugu Yoshida

2005 ◽  
Vol 280 (12) ◽  
pp. 11147-11151 ◽  
Author(s):  
Deepak Raina ◽  
Pramod Pandey ◽  
Rehan Ahmad ◽  
Ajit Bharti ◽  
Jian Ren ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Evan B. Dewey ◽  
Amalia S. Parra ◽  
Christopher A. Johnston

AbstractEpithelia are an eminent tissue type and a common driver of tumorigenesis, requiring continual precision in cell division to maintain tissue structure and genome integrity. Mitotic defects often trigger apoptosis, impairing cell viability as a tradeoff for tumor suppression. Identifying conditions that lead to cell death and understanding the mechanisms behind this response are therefore of considerable importance. Here we investigated how epithelia of the Drosophila wing disc respond to loss of Short stop (Shot), a cytoskeletal crosslinking spectraplakin protein that we previously found to control mitotic spindle assembly and chromosome dynamics. In contrast to other known spindle-regulating genes, Shot knockdown induces apoptosis in the absence of Jun kinase (JNK) activation, but instead leads to elevated levels of active p38 kinase. Shot loss leads to double-strand break (DSB) DNA damage, and the apoptotic response is exacerbated by concomitant loss of p53. DSB accumulation is increased by suppression of the spindle assembly checkpoint, suggesting this effect results from chromosome damage during error-prone mitoses. Consistent with DSB induction, we found that the DNA damage and stress response genes, Growth arrest and DNA damage (GADD45) and Apoptosis signal-regulating kinase 1 (Ask1), are transcriptionally upregulated as part of the shot-induced apoptotic response. Finally, co-depletion of Shot and GADD45 induced significantly higher rates of chromosome segregation errors in cultured cells and suppressed shot-induced mitotic arrest. Our results demonstrate that epithelia are capable of mounting molecularly distinct responses to loss of different spindle-associated genes and underscore the importance of proper cytoskeletal organization in tissue homeostasis.


Sign in / Sign up

Export Citation Format

Share Document