scholarly journals Quantum mutual information of an entangled state propagating through a fast-light medium

2014 ◽  
Vol 8 (7) ◽  
pp. 515-519 ◽  
Author(s):  
Jeremy B. Clark ◽  
Ryan T. Glasser ◽  
Quentin Glorieux ◽  
Ulrich Vogl ◽  
Tian Li ◽  
...  
2014 ◽  
Author(s):  
Ryan T. Glasser ◽  
Jeremy B. Clark ◽  
Quentin Glorieux ◽  
Ulrich Vogl ◽  
Paul D. Lett

2008 ◽  
Vol 06 (supp01) ◽  
pp. 745-750 ◽  
Author(s):  
T. C. DORLAS ◽  
C. MORGAN

We obtain a maximizer for the quantum mutual information for classical information sent over the quantum amplitude damping channel. This is achieved by limiting the ensemble of input states to antipodal states, in the calculation of the product state capacity for the channel. We also consider the product state capacity of a convex combination of two memoryless channels and demonstrate in particular that it is in general not given by the minimum of the capacities of the respective memoryless channels.


2015 ◽  
Vol 56 (2) ◽  
pp. 022205 ◽  
Author(s):  
Mario Berta ◽  
Kaushik P. Seshadreesan ◽  
Mark M. Wilde

Laser Physics ◽  
2014 ◽  
Vol 24 (11) ◽  
pp. 115404 ◽  
Author(s):  
Habibur Rahman ◽  
Hizbullah ◽  
M S Abdul Jabar ◽  
Anwar Ali Khan ◽  
Iftikhar Ahmad ◽  
...  

Author(s):  
Frédéric Dupuis ◽  
Jan Florjanczyk ◽  
Patrick Hayden ◽  
Debbie Leung

It is known that the maximum classical mutual information, which can be achieved between measurements on pairs of quantum systems, can drastically underestimate the quantum mutual information between them. In this article, we quantify this distinction between classical and quantum information by demonstrating that after removing a logarithmic-sized quantum system from one half of a pair of perfectly correlated bitstrings, even the most sensitive pair of measurements might yield only outcomes essentially independent of each other. This effect is a form of information locking but the definition we use is strictly stronger than those used previously. Moreover, we find that this property is generic, in the sense that it occurs when removing a random subsystem. As such, the effect might be relevant to statistical mechanics or black hole physics. While previous works had always assumed a uniform message, we assume only a min-entropy bound and also explore the effect of entanglement. We find that classical information is strongly locked almost until it can be completely decoded. Finally, we exhibit a quantum key distribution protocol that is ‘secure’ in the sense of accessible information but in which leakage of even a logarithmic number of bits compromises the secrecy of all others.


2004 ◽  
Vol 4 (6&7) ◽  
pp. 537-545
Author(s):  
P.W. Shor

We give the trade-off curve showing the capacity of a quantum channel as a function of the amount of entanglement used by the sender and receiver for transmitting information. The endpoints of this curve are given by the Holevo-Schumacher-Westmoreland capacity formula and the entanglement-assisted capacity, which is the maximum over all input density matrices of the quantum mutual information. The proof we give is based on the Holevo-Schumacher-Westmoreland formula, and also gives a new and simpler proof for the entanglement-assisted capacity formula.


Sign in / Sign up

Export Citation Format

Share Document