quantum mutual information
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Akram Touil ◽  
Baris Cakmak ◽  
Sebastian Deffner

Abstract It is an established fact that quantum coherences have thermodynamic value. The natural question arises, whether other genuine quantum properties such as entanglement can also be exploited to extract thermodynamic work. In the present analysis, we show that the ergotropy can be expressed as a function of the quantum mutual information, which demonstrates the contributions to the extractable work from classical and quantum correlations. More specifically, we analyze bipartite quantum systems with locally thermal states, such that the only contribution to the ergotropy originates in the correlations. Our findings are illustrated for a two-qubit system collectively coupled to a thermal bath.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1594
Author(s):  
Shuangshuang Fu ◽  
Shunlong Luo

As a direct consequence of the interplay between the superposition principle of quantum mechanics and the dynamics of open systems, decoherence is a recurring theme in both foundational and experimental exploration of the quantum realm. Decoherence is intimately related to information leakage of open systems and is usually formulated in the setup of “system + environment” as information acquisition of the environment (observer) from the system. As such, it has been mainly characterized via correlations (e.g., quantum mutual information, discord, and entanglement). Decoherence combined with redundant proliferation of the system information to multiple fragments of environment yields the scenario of quantum Darwinism, which is now a widely recognized framework for addressing the quantum-to-classical transition: the emergence of the apparent classical reality from the enigmatic quantum substrate. Despite the half-century development of the notion of decoherence, there are still many aspects awaiting investigations. In this work, we introduce two quantifiers of classicality via the Jordan product and uncertainty, respectively, and then employ them to quantify decoherence from an information-theoretic perspective. As a comparison, we also study the influence of the system on the environment.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Patrick Hayden ◽  
Onkar Parrikar ◽  
Jonathan Sorce

Abstract The reflected entropy SR(A : B) of a density matrix ρAB is a bipartite correlation measure lower-bounded by the quantum mutual information I(A : B). In holographic states satisfying the quantum extremal surface formula, where the reflected entropy is related to the area of the entanglement wedge cross-section, there is often an order-N2 gap between SR and I. We provide an information-theoretic interpretation of this gap by observing that SR− I is related to the fidelity of a particular Markov recovery problem that is impossible in any state whose entanglement wedge cross-section has a nonempty boundary; for this reason, we call the quantity SR− I the Markov gap. We then prove that for time-symmetric states in pure AdS3 gravity, the Markov gap is universally lower bounded by log(2)ℓAdS/2GN times the number of endpoints of the cross-section. We provide evidence that this lower bound continues to hold in the presence of bulk matter, and comment on how it might generalize above three bulk dimensions. Finally, we explore the Markov recovery problem controlling SR− I using fixed area states. This analysis involves deriving a formula for the quantum fidelity — in fact, for all the sandwiched Rényi relative entropies — between fixed area states with one versus two fixed areas, which may be of independent interest. We discuss, throughout the paper, connections to the general theory of multipartite entanglement in holography.


Author(s):  
B. Maroufi ◽  
J. El Qars ◽  
M. Daoud

In a two-mode Gaussian state [Formula: see text], we report on stationary evolution of three measures of correlations defined via the Rényi-2 entropy, i.e. quantum mutual information (QMI) [Formula: see text], the Gaussian–Rényi-2 entanglement (GR2E) [Formula: see text] and Gaussian quantum steering (GQS) [Formula: see text]. We evaluate analytical expression of the covariance matrix fully describing the state [Formula: see text]. Further, we study, under influences of parameters characterizing the state at hand and its environment, the behavior of the three considered measures. We find that quantum steering [Formula: see text] is always upper bounded by (GR2E) [Formula: see text], which in turn is found always upper bounded by half of the QMI [Formula: see text]. This therefore satisfies the hierarchical relation [Formula: see text] established in [L. Lami, C. Hirche, G. Adesso and A. Winter, Phys. Rev. Lett.117 (2016) 220502]. Importantly, we find that both GR2E [Formula: see text] and GQS [Formula: see text] are strongly affected by the thermal effects. Remarkably, when the GR2E [Formula: see text] thoroughly vanishes, the GMI [Formula: see text] exhibits a freezing behavior, and seems to be captured within a wide range of temperature.


2020 ◽  
Vol 34 (08) ◽  
pp. 2050066 ◽  
Author(s):  
M. Amazioug ◽  
L. Jebli ◽  
M. Nassik ◽  
N. Habiballah

We study the dynamics of classical-quantum correlations in the nonadiabatic regime, using the rotating wave approximation (RWA), between two movable mirrors of two spatially separated Fabry–Pérot cavities, each of the two cavities having a movable end-mirror and coupled to a two-mode squeezed light from spontaneous parametric down-conversion. This work completes our previous work [M. Amazioug, M. Nassik and N. Habiballah, Eur. Phys. J. D 72, 171 (2018)] where we have studied the transfer of quantum correlations in steady state. The Bures distance is used to quantify the amount of entanglement of the symmetrical squeezed thermal state, and the Gaussian quantum discord is considered to quantify the quantumness of the quantum correlations even though the two movable mirrors are separable. Furthermore, total correlations are quantified using quantum mutual information. Indeed, these three indicators depend mainly on the temperature of the movable mirror and the squeezing parameter in strong coupling regime.


Axioms ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 20
Author(s):  
Diego G. Bussandri ◽  
Tristán M. Osán ◽  
Pedro W. Lamberti ◽  
Ana P. Majtey

We built a new set of suitable measures of correlations for bipartite quantum states based upon a recently introduced theoretical framework [Bussandri et al. in Quantum Inf. Proc. 18:57, 2019]. We applied these measures to examine the behavior of correlations in two-qubit states with maximally mixed marginals independently interacting with non-dissipative decohering environments in different dynamical scenarios of physical relevance. In order to get further insight about the physical meaning of the behavior of these correlation measures we compared our results with those obtained by means of well-known correlation measures such as quantum mutual information and quantum discord. On one hand, we found that the behaviors of total and classical correlations, as assessed by means of the measures introduced in this work, are qualitatively in agreement with the behavior displayed by quantum mutual information and the measure of classical correlations typically used to calculate quantum discord. We also found that the optimization of all the measures of classical correlations depends upon a single parameter and the optimal value of this parameter turns out to be the same in all cases. On the other hand, regarding the measures of quantum correlations used in our studies, we found that in general their behavior does not follow the standard quantum discord D . As the quantification by means of standard quantum discord and the measures of quantum correlations introduced in this work depends upon the assumption that total correlations are additive, our results indicate that this property needs a deeper and systematic study in order to gain a further understanding regarding the possibility to obtain reliable quantifiers of quantum correlations within this additive scheme.


2019 ◽  
Vol 7 (4) ◽  
Author(s):  
Luca Dell'Anna

We derive some entanglement properties of the ground states for two classes of quantum spin chains described by the Fredkin model, for half-integer spins, and the Motzkin model, for integer ones. Since the ground states of the two models are known analytically, we can calculate exactly the entanglement entropy, the negativity and the quantum mutual information. We show, in particular, that these systems exhibit long-distance entanglement, namely two disjoint regions of the chains remain entangled even when their separation is sent to infinity, i.e. these systems are not affected by decoherence. This strongly entangled behavior, Finally, we show that this behavior involves disjoint segments located both at the edges and in the bulk of the chains.


2019 ◽  
Vol 17 (02) ◽  
pp. 1950011
Author(s):  
Davide Pastorello

It is well known that quantum mechanics admits a geometric formulation on the complex projective space as a Kähler manifold. In this paper, we consider the notion of mutual information among continuous random variables in relation to the geometric description of a composite quantum system introducing a new measure of total correlations that can be computed in terms of Gaussian integrals.


Sign in / Sign up

Export Citation Format

Share Document