Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections

2007 ◽  
Vol 2 (6) ◽  
pp. 1508-1514 ◽  
Author(s):  
Gregor Obernosterer ◽  
Javier Martinez ◽  
Mattias Alenius
1995 ◽  
Vol 4 (2) ◽  
pp. 253-256 ◽  
Author(s):  
Henry F. Oettinger ◽  
Amelie Rodrigue-Way ◽  
Joyce J. Bousquet ◽  
Albert S.B. Edge

Using a digoxygenin-labelled DNA probe derived from the porcine repeat element PRE-1, we have developed a protocol for the detection of transplanted porcine islets and hepatocytes against a background of murine host tissue. Analysis of this probe by Southern blotting indicated that PRE-1 hybridizes to pig genomic DNA but not to human or mouse DNA. On tissue sections, hybridizing probe was detected using alkaline phosphatase-conjugated anti-digoxygenin antibody visualized with 5-bromo-4-chloro-3-indolyl-phosphate/4-nitro-blue tetrazolium chloride (BCIP/ NBT) substrate. We have demonstrated sensitive and highly specific staining of porcine nuclei in fixed, paraffin embedded tissue sections, and have applied the technique to detect porcine pancreatic islets and hepatocytes transplanted into murine kidney and spleen. Applications of this technique include detection of transplanted cells or organs across a variety of xenogeneic barriers.


2009 ◽  
Vol 15 (12) ◽  
pp. 4009-4016 ◽  
Author(s):  
Nobutake Yamamichi ◽  
Ryoichi Shimomura ◽  
Ken-ichi Inada ◽  
Kouhei Sakurai ◽  
Takeshi Haraguchi ◽  
...  

2006 ◽  
Vol 72 (8) ◽  
pp. 5311-5317 ◽  
Author(s):  
Kengo Kubota ◽  
Akiyoshi Ohashi ◽  
Hiroyuki Imachi ◽  
Hideki Harada

ABSTRACT Low signal intensity due to poor probe hybridization efficiency is one of the major drawbacks of rRNA-targeted in situ hybridization. There are two major factors affecting the hybridization efficiency: probe accessibility and affinity to the targeted rRNA molecules. In this study, we demonstrate remarkable improvement in in situ hybridization efficiency by applying locked-nucleic-acid (LNA)-incorporated oligodeoxynucleotide probes (LNA/DNA probes) without compromising specificity. Fluorescently labeled LNA/DNA probes with two to four LNA substitutions exhibited strong fluorescence intensities equal to or greater than that of probe Eub338, although these probes did not show bright signals when they were synthesized as DNA probes; for example, the fluorescence intensity of probe Eco468 increased by 22-fold after three LNA bases were substituted for DNA bases. Dissociation profiles of the probes revealed that the dissociation temperature was directly related to the number of LNA substitutions and the fluorescence intensity. These results suggest that the introduction of LNA residues in DNA probes will be a useful approach for effectively enhancing probe hybridization efficiency.


2008 ◽  
Vol 25 (3) ◽  
pp. 283-287
Author(s):  
CHRISTINA PETTAN-BREWER ◽  
LI FU ◽  
SAMIR S. DEEB

Many attempts have been made over the years to distinguish human and primate L (long-wavelength sensitive) from M (middle-wavelength sensitive) cone photoreceptors using either immunohistochemistry or in situ hybridization. These attempts have been unsuccessful due to the very high degree of identity between the sequences of the L and M proteins and encoding mRNAs. The recent development of chemically modified oligonucleotide probes, referred to as locked nucleic acid (LNA) probes, has shown that they hybridize with much greater affinity and specificity to the target nucleic acid. This has greatly increased the potential for differentiating L from M cones by in situ hybridization. We have designed LNA oligonucleotide probes that are complementary to either the L or M coding sequences located in exon 5 of the Macaca nemestrina L and M pigment genes. We have shown that the LNA-M and LNA-L probes hybridize specifically to their respective target nucleic acid sequences in vitro. This result strongly suggests that these probes would be instrumental in rapidly distinguishing L from M cone in the entire retina, and in defining the cone mosaic during development and in adults.


1985 ◽  
Vol 33 (10) ◽  
pp. 1026-1032 ◽  
Author(s):  
H A McAllister ◽  
D L Rock

Traditionally tissues for in situ hybridization of viral nucleic acid have been small pieces obtained from laboratory rodents, and fixatives that are designed for electron microscopy, such as periodate-lysine-paraformaldehyde (PLP) can handle them adequately. However, these fixatives have limited penetrating ability and may produce no appreciable hardening, so alternative fixation methods were evaluated. The intention was to determine whether fixatives adequate for bulky tissues such as whole or halved pig and cow brains would also be compatible with in situ hybridization. Various fixatives were evaluated using a system of intracranial inoculation of BALB/c mice with pseudorabies virus (PRV) followed by in situ hybridization of brain tissue sections with a 35S-labeled PRV DNA probe. Loss of tissue sections was a major problem, particularly with PLP and formalin, but positive results were obtained with five fixatives tested. Cellular morphology was especially good with PLP and with a modification of Carnoy's fluid, MOCA fixative. An incidental but important observation was that formalin is compatible with in situ hybridization. Retroactive studies of viral diseases using routinely processed blocks of tissue (formalin-fixed, paraffin-embedded) are therefore conceivable.


PLoS ONE ◽  
2019 ◽  
Vol 14 (5) ◽  
pp. e0217689 ◽  
Author(s):  
Andreia S. Azevedo ◽  
Inês M. Sousa ◽  
Ricardo M. Fernandes ◽  
Nuno F. Azevedo ◽  
Carina Almeida

Sign in / Sign up

Export Citation Format

Share Document