southern blotting
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 26)

H-INDEX

45
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Haoran Zhang ◽  
Ying Xiang ◽  
Yong Huang ◽  
Beibei Liang ◽  
Xuebin Xu ◽  
...  

With the rapid emergence of plasmid-mediated colistin resistance gene mcr-1, the increased resistance of Salmonella has attracted extensive attention. This study reports on 11 multidrug-resistant Salmonella enterica serovar Typhimurium strains harboring mcr-1 in China. They all presented resistance to colistin, and additionally, one that was isolated from a child’s stool sample was also resistant to ceftriaxone and azithromycin. We screened 1454 strains of Salmonella for mcr-1 gene through PCR, and these strains are all preserved in our laboratory. Antimicrobial sensitivity analysis was carried out for the screened mcr-1 positive strains. Genetic polymorphism analysis of S. Typhimurium was performed by using the Pulsed-Field Gel Electrophoresis (PFGE). The plasmids harboring mcr-1 were identified by S1-PFGE and southern blotting. Plasmid conjugation assays were used to analyze the transferability of colistin resistance. The plasmids harboring mcr-1 were characterized by sequencing and bioinformatic analysis. Eleven S. Typhimurium strains harboring mcr-1 with colistin resistance (MICs 4μg/ml) were detected, which were isolated from children and pig offal in China. All of them were multidrug-resistant strains. PFGE results revealed that the strains isolated from different samples or locations have identical genotypes. S1-PFGE and southern blotting experiments showed that three plasmids of different sizes (33, 60, and 250 kb) all carried the mcr-1 gene. The plasmid conjugation assays revealed that Salmonella acquired mcr-1 harboring plasmids by horizontal transfer. Sequencing and plasmid type analysis revealed that these plasmids were types IncX4, IncI2, and IncHI2. Among them, IncX4 and IncI2 plasmids had extremely similar backbones and contained one resistant gene mcr-1. IncHI2 plasmid contained multiple resistant genes including blaCTX–M, oqxB, sul, aph, aadA, and blaTEM. We identified 11 mcr-1 harboring S. Typhimurium strains in China and described their characteristics. Our findings indicate that the mcr-1 gene can effectively spread among intestinal bacteria by horizontal transfer of three types of plasmids. Moreover, the IncHI2 plasmid can also mediate the transfer of other drug resistance genes. These results reveal that constant surveillance of mcr-1 harboring S Typhimurium is imperative to prevent the spread of colistin resistance.


2021 ◽  
Vol 15 (12) ◽  
pp. e0010041
Author(s):  
Ester Poláková ◽  
Amanda T. S. Albanaz ◽  
Alexandra Zakharova ◽  
Tatiana S. Novozhilova ◽  
Evgeny S. Gerasimov ◽  
...  

Background Telomeres are indispensable for genome stability maintenance. They are maintained by the telomere-associated protein complex, which include Ku proteins and a telomerase among others. Here, we investigated a role of Ku80 in Leishmania mexicana. Leishmania is a genus of parasitic protists of the family Trypanosomatidae causing a vector-born disease called leishmaniasis. Methodology/Principal findings We used the previously established CRISPR/Cas9 system to mediate ablation of Ku80- and Ku70-encoding genes in L. mexicana. Complete knock-outs of both genes were confirmed by Southern blotting, whole-genome Illumina sequencing, and RT-qPCR. Resulting telomeric phenotypes were subsequently investigated using Southern blotting detection of terminal restriction fragments. The genome integrity in the Ku80- deficient cells was further investigated by whole-genome sequencing. Our work revealed that telomeres in the ΔKu80 L. mexicana are elongated compared to those of the wild type. This is a surprising finding considering that in another model trypanosomatid, Trypanosoma brucei, they are shortened upon ablation of the same gene. A telomere elongation phenotype has been documented in other species and associated with a presence of telomerase-independent alternative telomere lengthening pathway. Our results also showed that Ku80 appears to be not involved in genome stability maintenance in L. mexicana. Conclusion/Significance Ablation of the Ku proteins in L. mexicana triggers telomere elongation, but does not have an adverse impact on genome integrity.


2021 ◽  
Author(s):  
Laszlo Bartha ◽  
Terezie Mandakova ◽  
Ales Kovarik ◽  
Paul Adrian Bulzu ◽  
Nathalie Rodde ◽  
...  

The occurrence of horizontal gene transfer (HGT) in Eukarya is increasingly gaining recognition. Nuclear-to-nuclear jump of DNA between plant species at high phylogenetic distance and devoid of intimate association (e.g., parasitism) is still scarcely reported. Within eukaryotes, components of ribosomal DNA (rDNA) multigene family have been found to be horizontally transferred in protists, fungi and grasses. However, in neither case HGT occurred between phylogenetic families, nor the transferred rDNA remained tandemly arrayed and transcriptionally active in the recipient organism. This study aimed to characterize an alien eudicot-type of 45S nuclear rDNA, assumingly transferred horizontally to the genome of monocot European Erythronium (Liliaceae). Genome skimming coupled by PacBio HiFi sequencing of a BAC clone were applied to determine DNA sequence of the alien rDNA. A clear phylogenetic signal traced the origin of the alien rDNA of Erythronium back to the Argentea clade of Potentilla (Rosaceae) and deemed the transfer to have occurred in the common ancestor of E. dens-canis and E. caucasicum. Though being discontinuous, transferred rDNA preserved its general tandemly arrayed feature in the host organism. Southern blotting, molecular cytogenetics, and sequencing of a BAC clone derived from flow-sorted nuclei indicated integration of the alien rDNA into the recipient's nuclear genome. Unprecedently, dicot-type alien rDNA was found to be transcribed in the monocot Erythronium albeit much less efficiently than the native counterpart. This study adds a new example to the growing list of naturally transgenic plants while holding the scientific community continually in suspense about the mode of DNA transfer.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260837
Author(s):  
Eric D. Wieben ◽  
Ross A. Aleff ◽  
Tommy A. Rinkoski ◽  
Keith H. Baratz ◽  
Shubham Basu ◽  
...  

Expansion of CTG trinucleotide repeats (TNR) in the transcription factor 4 (TCF4) gene is highly associated with Fuchs Endothelial Corneal Dystrophy (FECD). Due to limitations in the availability of DNA from diseased corneal endothelium, sizing of CTG repeats in FECD patients has typically been determined using DNA samples isolated from peripheral blood leukocytes. However, it is non-feasible to extract enough DNA from surgically isolated FECD corneal endothelial tissue to determine repeat length based on current technology. To circumvent this issue, total RNA was isolated from FECD corneal endothelium and sequenced using long-read sequencing. Southern blotting of DNA samples isolated from primary cultures of corneal endothelium from these same affected individuals was also assessed. Both long read sequencing and Southern blot analysis showed significantly longer CTG TNR expansion (>1000 repeats) in the corneal endothelium from FECD patients than those characterized in leukocytes from the same individuals (<90 repeats). Our findings suggest that the TCF4 CTG repeat expansions in the FECD corneal endothelium are much longer than those found in leukocytes.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1129
Author(s):  
Anna Solovyeva ◽  
Ivan Levakin ◽  
Evgeny Zorin ◽  
Leonid Adonin ◽  
Yuri Khotimchenko ◽  
...  

Trematode parthenitae have long been believed to form clonal populations, but clonal diversity has been discovered in this asexual stage of the lifecycle. Clonal polymorphism in the model species Himasthla elongata has been previously described, but the source of this phenomenon remains unknown. In this work, we traced cercarial clonal diversity using a simplified amplified fragment length polymorphism (SAFLP) method and characterised the nature of fragments in diverse electrophoretic bands. The repetitive elements were identified in both the primary sequence of the H. elongata genome and in the transcriptome data. Long-interspersed nuclear elements (LINEs) and long terminal repeat retrotransposons (LTRs) were found to represent an overwhelming majority of the genome and the transposon transcripts. Most sequenced fragments from SAFLP pattern contained the reverse transcriptase (RT, ORF2) domains of LINEs, and only a few sequences belonged to ORFs of LTRs and ORF1 of LINEs. A fragment corresponding to a CR1-like (LINE) spacer region was discovered and named CR1-renegade (CR1-rng). In addition to RT-containing CR1 transcripts, we found short CR1-rng transcripts in the redia transcriptome and short contigs in the mobilome. Probes against CR1-RT and CR1-rng presented strikingly different pictures in FISH mapping, despite both being fragments of CR1. In silico data and Southern blotting indicated that CR1-rng is not tandemly organised. CR1 involvement in clonal diversity is discussed.


2021 ◽  
Vol 2021 (7) ◽  
pp. pdb.top100396 ◽  
Author(s):  
Michael R. Green ◽  
Joseph Sambrook
Keyword(s):  

2021 ◽  
Vol 2021 (7) ◽  
pp. pdb.prot100487 ◽  
Author(s):  
Michael R. Green ◽  
Joseph Sambrook
Keyword(s):  

Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 982
Author(s):  
Nikolay Vladimirovich Zernov ◽  
Anna Alekseevna Guskova ◽  
Mikhail Yurevich Skoblov

Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant myodystrophy. Approximately 95% of cases of FSHD are caused by partial deletion of the D4Z4 macrosatellite tandem repeats on chromosome 4q35. The existing FSHD1 diagnostic methods are laborious and not widely used. Here, we present a comprehensive analysis of the currently used diagnostic methods (Southern blotting and molecular combing) against a new qPCR-based approach for FSHD1 diagnosis. We observed 93% concordance between the results obtained by the new qPCR-based approach, reference Southern blotting and molecular combing methods. Applying the qPCR-based approach in the studied population, we observed a prevalence (64.9%) of the permissive alleles in the range of 3–6 D4Z4 units for a group of patients, while in a group of carriers, the permissive alleles were mostly (84.6%) present in the range of 6–9 D4Z4 units. No prevalence of disease penetrance depending on gender was observed. The results confirmed the earlier established inverse correlation between permissive allele size and disease severity, disease penetrance. The results suggest the applicability of the qPCR-based approach for FSHD1 diagnosis and its robustness in a basic molecular genetics laboratory. To our knowledge, this is the first study of FSHD1 permissive allele distribution in a Russian population.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 398
Author(s):  
Nikhil Shri Sahajpal ◽  
Hayk Barseghyan ◽  
Ravindra Kolhe ◽  
Alex Hastie ◽  
Alka Chaubey

Global medical associations (ACOG, ISUOG, ACMG) recommend diagnostic prenatal testing for the detection and prevention of genetic disorders. Historically, cytogenetic methods such as karyotype analysis, fluorescent in situ hybridization (FISH) and chromosomal microarray (CMA) are utilized worldwide to diagnose common syndromes. However, the limitations of each of these methods, either performed in tandem or simultaneously, demonstrates the need of a revolutionary technology that can alleviate the need for multiple technologies. Optical genome mapping (OGM) is a novel method that fills this void by being able to detect all classes of structural variations (SVs), including copy number variations (CNVs). OGM is being adopted by laboratories as a tool for both postnatal constitutional genetic disorders and hematological malignancies. This commentary highlights the potential for OGM to become a standard of care in prenatal genetic testing based on its capability to comprehensively identify large balanced and unbalanced SVs (currently the strength of karyotyping and metaphase FISH), CNVs (by CMA), repeat contraction disorders (by Southern blotting) and multiple repeat expansion disorders (by PCR-based methods or Southern blotting). Next-generation sequencing (NGS) methods are excellent at detecting sequence variants, but they are unable to accurately resolve repeat regions of the genome, which limits their ability to detect all classes of SVs. Notably, multiple molecular methods are used to identify repeat expansion and contraction disorders in routine clinical laboratories around the world. With non-invasive prenatal testing (NIPT) becoming the standard of care screening assay for all global pregnancies, we anticipate that OGM can provide a high-resolution, cytogenomic assay to be employed following a positive NIPT screen or for high-risk pregnancies with an abnormal ultrasound. Accurate detection of all types of genetic disorders by OGM, such as liveborn aneuploidies, sex chromosome anomalies, microdeletion/microduplication syndromes, repeat expansion/contraction disorders is key to reducing the global burden of genetic disorders.


2021 ◽  
Author(s):  
Nikhil Shri Sahajpal ◽  
Hayk Barseghyan ◽  
Ravindra Kolhe ◽  
Alex Hastie ◽  
Alka Chaubey

Global medical associations (ACOG, ISUOG, ACMG) recommend diagnostic prenatal testing for the detection and prevention of genetic disorders. Historically, cytogenetic methods such as karyotype analysis, fluorescent in situ hybridization (FISH), and chromosomal microarray (CMA) are utilized worldwide to diagnose common syndromes. However, the limitations of each of these methods, either performed in tandem or simultaneously, demonstrates the need of a revolutionary technology that can alleviate the need of multiple technologies. Optical genome mapping (OGM) is a novel technology that fills this void by being able to detect all classes of structural variations (SVs), including copy number variations (CNVs). OGM is being adopted by laboratories as a next-generation cytogenomic tool for both postnatal constitutional genetic disorders and hematological malignancies. This commentary highlights the potential of OGM to become a standard of care in prenatal genetic testing by its ability to identify large balanced and unbalanced SVs (currently the strength of karyotyping and metaphase FISH), CNVs (by CMA), repeat contraction disorders (by Southern blotting) and multiple repeat expansion disorders (by PCR based methods or Southern blotting). Also, next-generation sequencing (NGS) methods are excellent at detecting sequencing variants but are unable to accurately detect the repeat regions of the genome which limits the ability to detect all classes of SVs. Notably, multiple molecular methods are used to identify repeat expansion and contraction disorders in routine clinical laboratories around the world. With non-invasive prenatal screening test (NIPT) as the standard of care screening assay for all global pregnancies, we anticipate OGM as a high-resolution cytogenomic diagnostic tool employed following a positive NIPT screen or for high-risk pregnancies with an abnormal ultrasound. Accurate detection of all types of genetic disorders by OGM, such as liveborn aneuploidies, sex chromosome anomalies, microdeletion/microduplication syndromes, repeat expansion/contra5ction disorders is key to reducing the global burden of genetic disorders.


Sign in / Sign up

Export Citation Format

Share Document