scholarly journals 5′ end–centered expression profiling using cap-analysis gene expression and next-generation sequencing

2012 ◽  
Vol 7 (3) ◽  
pp. 542-561 ◽  
Author(s):  
Hazuki Takahashi ◽  
Timo Lassmann ◽  
Mitsuyoshi Murata ◽  
Piero Carninci
2010 ◽  
Vol 22 (1) ◽  
pp. 279
Author(s):  
S. C. Isom ◽  
R. S. Prather

Traditional microarray approaches to gene expression profiling often require RNA or cDNA amplification when working with extremely small or valuable tissue samples.This process is generally viewed as being undesirable because there is potential for bias to be introduced during amplification. Very recently, the so-called next-generation sequencing technologies were adapted for use in global gene expression profiling. Herein we report our efforts to apply these sequencing technologies to assess relative transcript abundances in pre-implantation-stage porcine embryos, without additional nucleic acid amplification before sequencing. As a proof-of-principle experiment, we have isolated total RNA from the embryonic disc (inner cell mass; ICM) and a small piece of trophectoderm (TE) from a Day 12 in vivo-produced embryo, which were estimated to be composed of 500 to 1000 cells each. The RNA was reverse transcribed using oligo-dT priming followed by second-strand cDNA synthesis. The double-stranded cDNA was then randomly sheared by sonication, and 10 ng of double-stranded cDNA fragments was used for sample preparation before sequencing. Prepared cDNA fragments (at 7 picomolar concentrations) were submitted for sequencing using the Illumina/Solexa platform as recommended. The millions of short (36 bp) reads generated by Illumina sequencing for each sample were then aligned to the swine UniGene database from NCBI, allowing for zero or one mismatches. Relative transcript abundances between cell types were profiled by considering the read counts for a given UniGene member as a percentage of the total number of reads generated for each cell type. It was demonstrated that approximately 11 000 and 9000 UniGene members were represented by a normalized average of 5 or more short reads per lane (0.001% of the total) in the ICM and TE samples, respectively. As expected, pluripotency factors, chromatin remodeling components, and cell-cell communication molecules were overrepresented in the ICM sample as compared with the TE sample. Conversely, epithelial determinants, ion transporters, and components of the steroid biosynthesis pathways were more abundant in the TE sample than in the ICM sample. Relative abundances of representative transcripts in these samples were verified by quantitative RT-PCR. In conclusion, we demonstrate the utility of next-generation sequencing technologies for gene expression profiling using even minute tissue samples and show that such analyses are possible even in species without a sequenced genome.


2012 ◽  
Vol 28 (8) ◽  
pp. 1184-1185 ◽  
Author(s):  
Markus Krupp ◽  
Jens U. Marquardt ◽  
Ugur Sahin ◽  
Peter R. Galle ◽  
John Castle ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e22953 ◽  
Author(s):  
Stefan Siebert ◽  
Mark D. Robinson ◽  
Sophia C. Tintori ◽  
Freya Goetz ◽  
Rebecca R. Helm ◽  
...  

2021 ◽  
Author(s):  
Jumpei Yamazaki ◽  
Yuki Matsumoto ◽  
Jaroslav Jelinek ◽  
Teita Ishizaki ◽  
Shingo Maeda ◽  
...  

Abstract Background: DNA methylation plays important functions in gene expression regulation that is involved in individual development and various diseases. DNA methylation has been well studied in human and model organisms, but only limited data exist in companion animals like dog. Results: Using methylation-sensitive restriction enzyme-based next generation sequencing (Canine DREAM), we obtained canine DNA methylation maps from 16 somatic tissues. In total, we evaluated 130,861 CpG sites. The majority of CpG sites were either highly methylated (>70%, 52.5%-64.6% of all CpG sites analyzed) or unmethylated (<30%, 22.5%-28.0% of all CpG sites analyzed) which are methylation patterns similar to other species. The overall methylation status of CpG sites across the 32 methylomes were remarkably similar. However, the tissue types were clearly defined by principle component analysis and hierarchical clustering analysis with DNA methylome. We found 6416 CpG sites located closely at promoter region of genes and inverse correlation between DNA methylation and gene expression of these genes. Conclusions: Our study provides basic dataset for DNA methylation profiles in dogs.


Sign in / Sign up

Export Citation Format

Share Document