scholarly journals Spinning molecular immunology into successful immunotherapy

2002 ◽  
Vol 2 (4) ◽  
pp. 227-238 ◽  
Author(s):  
Drew M. Pardoll
2020 ◽  
Vol 20 ◽  
Author(s):  
Suman K Ray ◽  
Yamini Meshram ◽  
Sukhes Mukherjee

: Cancer immunotherapy endeavours in harnessing delicate strength and specificity of immune system for therapy of different malignancies including colorectal carcinoma. The recent challenge for cancer immunotherapy is to practice and develop molecular immunology tools to create tactics that efficiently and securely boost antitumor reactions. After several attempts of deceptive outcomes, the wave has lastly altered and immunotherapy has become a clinically confirmed treatment for several cancers. Immunotherapeutic methods include administration of antibodies or modified proteins that either block cellular activity or co-stimulate cells through immune control pathways, cancer vaccines, oncolytic bacteria, ex vivo activated adoptive transfer of T cells and natural killer cells. Engineered T cells are used to produce a chimeric antigen receptor (CAR) to treat different malignancies including colorectal carcinoma in a recent decade. Despite considerable early clinical success, CAR-T therapies are associated with some side effects and sometimes display minimal efficacy. It gives special emphasis on the latest clinical evidence with CAR-T technology and also other related immunotherapeutic methods with promising performance, and highlighted how this therapy can affect therapeutic outcome and next upsurge as a key clinical aspect of colorectal carcinoma. In this review we recapitulate the current developments produced to improve the efficacy and specificity of CAR-T therapies in colon cancer.


2021 ◽  
Vol 9 (5) ◽  
pp. e001772
Author(s):  
John A Ligon ◽  
Woonyoung Choi ◽  
Gady Cojocaru ◽  
Wei Fu ◽  
Emily Han-Chung Hsiue ◽  
...  

BackgroundCurrent therapy for osteosarcoma pulmonary metastases (PMs) is ineffective. The mechanisms that prevent successful immunotherapy in osteosarcoma are incompletely understood. We investigated the tumor microenvironment of metastatic osteosarcoma with the goal of harnessing the immune system as a therapeutic strategy.Methods66 osteosarcoma tissue specimens were analyzed by immunohistochemistry (IHC) and immune markers were digitally quantified. Tumor-infiltrating lymphocytes (TILs) from 25 specimens were profiled by functional cytometry. Comparative transcriptomic studies of distinct tumor-normal lung ‘PM interface’ and ‘PM interior’ regions from 16 PMs were performed. Clinical follow-up (median 24 months) was available from resection.ResultsIHC revealed a statistically significantly higher concentration of TILs expressing immune checkpoint and immunoregulatory molecules in PMs compared with primary bone tumors (including programmed cell death 1 (PD-1), programmed death ligand 1 (PD-L1), lymphocyte-activation gene 3 (LAG-3), T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and indoleamine 2,3-dioxygenase (IDO1). Remarkably, these lymphocytes are excluded at the PM interface compared with PM interior. TILs from PMs exhibited significantly higher amounts of PD-1 and LAG-3 and functional cytokines including interferon-γ (IFNγ) by flow cytometry. Gene expression profiling further confirmed the presence of CD8 and CD4 lymphocytes concentrated at the PM interface, along with upregulation of immunoregulatory molecules and IFNγ-driven genes in the same region. We further discovered a strong alternatively activated macrophage signature throughout the entire PMs along with a polymorphonuclear myeloid-derived suppressor cell signature focused at the PM interface. Expression of PD-L1, LAG-3, and colony-stimulating factor 1 receptor (CSF1R) at the PM interface was associated with significantly worse progression-free survival (PFS), while gene sets indicative of productive T cell immune responses (CD8 T cells, T cell survival, and major histocompatibility complex class 1 expression) were associated with significantly improved PFS.ConclusionsOsteosarcoma PMs exhibit immune exclusion characterized by the accumulation of TILs at the PM interface. These TILs produce effector cytokines, suggesting their capability of activation and recognition of tumor antigens. Our findings suggest cooperative immunosuppressive mechanisms in osteosarcoma PMs including immune checkpoint molecule expression and the presence of immunosuppressive myeloid cells. We identify cellular and molecular signatures that are associated with patient outcomes, which could be exploited for successful immunotherapy.


1991 ◽  
Vol 21 (s1) ◽  
pp. 216-220 ◽  
Author(s):  
Hans-Jorgen Mailing

2016 ◽  
Vol 11 (4) ◽  
pp. 524-536 ◽  
Author(s):  
Arantza Azpilikueta ◽  
Jackeline Agorreta ◽  
Sara Labiano ◽  
José Luis Pérez-Gracia ◽  
Alfonso R. Sánchez-Paulete ◽  
...  

1992 ◽  
Vol 68 (798) ◽  
pp. 305-305 ◽  
Author(s):  
A.M. Denman
Keyword(s):  

1989 ◽  
Vol 10 (4) ◽  
pp. 141-142
Author(s):  
P. Parham
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document