The double faced role of xanthine oxidoreductase in cancer

Author(s):  
Man-man Chen ◽  
Ling-hua Meng
2004 ◽  
Vol 77 (11) ◽  
pp. 1683-1692 ◽  
Author(s):  
Kai Sun ◽  
Eva Kiss ◽  
Jens Bedke ◽  
Tomislav Stojanovic ◽  
Yanhua Li ◽  
...  

1981 ◽  
Vol 200 (3) ◽  
pp. 597-603 ◽  
Author(s):  
Z W Kamiński ◽  
M M Jezewska

The course of the reaction sequence hypoxanthine leads to xanthine leads to uric acid, catalysed by the NAD+-dependent activity of xanthine oxidoreductase, was investigated under conditions either of immediate oxidation of the NADH formed or of NADH accumulation. The enzymic preparation was obtained from rat liver, and purified 75-fold (as compared with the 25000 g supernatant) on a 5′-AMP-Sepharose 4B column; in this preparation the NAD+-dependent activity accounted for 100% of total xanthine oxidoreductase activity. A spectrophotometric method was developed for continuous measurements of changes in the concentrations of the three purines involved. The time course as well as the effects of the concentrations of enzyme and of hypoxanthine were examined. NADH produced by the enzyme lowered its activity by 50%, resulting in xanthine accumulation and in decreases of uric acid formation and of hypoxanthine utilization. The inhibition of the Xanthine oxidoreductase NAD+-dependent activity by NADH is discussed as a possible factor in the regulation of IMP biosynthesis by the ‘de novo’ pathway or (from unchanged hypoxanthine) by ther salvage pathway.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 604-P
Author(s):  
AKIFUMI KUSHIYAMA ◽  
TAKAKO KIKUCHI ◽  
HIROKI YAMAZAKI ◽  
TAKESHI YAMAMOTOYA ◽  
HIDEYUKI SAKODA ◽  
...  

Redox Biology ◽  
2017 ◽  
Vol 13 ◽  
pp. 163-169 ◽  
Author(s):  
Zhengbing Zhuge ◽  
Luciano L. Paulo ◽  
Arghavan Jahandideh ◽  
Maria C.R. Brandão ◽  
Petrônio F. Athayde-Filho ◽  
...  

Author(s):  
Kiranmai Mandava ◽  
Uma Rajeswari Batchu

<p>Xanthine oxidoreductase (XOR) is a widely distributed housekeeping enzyme in mammals that catalyzes the last two steps in human purine catabolism to produce uric acid. The enzyme exists as a homodimer with independent electron transfer in each monomer. This has been studied extensively as a major constituent of the milk fat globule membrane (MFGM) which surrounds fat globules in cow's milk even though purine catabolism is the most accepted function of XOR. A huge number of literature highlights on the different catalytic forms of XOR and their importance in the generation of reactive oxygen species/reactive nitrogen species (ROS/RNS) and synthesis of uric acid which are involved in many physiological and pathological processes. However, a slight ambiguity resides in their biochemical functions. The aim of this article was to review the literature published on the structural, catalytical, physiological and pathological role of XOR and to resolve the ambiguity in biochemical processes and to firm up various natural inhibitors of XOR collectively. Uric acid, the product of purine catabolism shows antioxidant activity, and XOR-derived ROS and RNS play a role in innate immunity, milk secretion and also be involved in signaling and metabolism of xenobiotics. Furthermore, XOR is likely to be engaged in pathology because of excessive production of uric acid and ROS/RNS. This review also reports natural XOR inhibitors in plants which inhibit the enzyme to treat XOR associated pathology.</p>


2004 ◽  
Vol 72 (9) ◽  
pp. 4933-4939 ◽  
Author(s):  
Hannah M. Martin ◽  
John T. Hancock ◽  
Vyv Salisbury ◽  
Roger Harrison

Platelets ◽  
2015 ◽  
Vol 27 (3) ◽  
pp. 245-253 ◽  
Author(s):  
K. Kramkowski ◽  
A. Leszczynska ◽  
K. Przyborowski ◽  
T. Kaminski ◽  
U. Rykaczewska ◽  
...  

Hypertension ◽  
2007 ◽  
Vol 50 (4) ◽  
pp. 657-662 ◽  
Author(s):  
Eiichiro Yamamoto ◽  
Keiichiro Kataoka ◽  
Takuro Yamashita ◽  
Yoshiko Tokutomi ◽  
Yi-Fei Dong ◽  
...  

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
T Watanabe ◽  
K Abe ◽  
M Ishikawa ◽  
T Ishikawa ◽  
S Imakiire ◽  
...  

Abstract Background Hyperuricemia occurs in approximately 80% in patients with pulmonary arterial hypertension (PAH) and is positively correlated with pulmonary arterial pressure (PAP). It has been reported that uric acid (UA) reduced endothelium derived nitric oxide (NO) production in porcine pulmonary arterial endothelial cells (PAEC). However, the effects of UA and xanthine oxidoreductase (XOR), catalytic enzyme of UA, on the development of PAH have not been fully elucidated. Purpose We examined the followings; (1) the effects of hyperuricemia on the endothelial function and the development of PAH in rats (2) the therapeutic effects of UA transporter inhibitor on PAH in rats, and (3) the role of XOR in PAH in mice. Methods We used normal and 5-wk Sugen5416/Hypoxia/Normoxia-exposed (SU/Hx/Nx) rats. Gene expression levels of URATv1, a UA transporter, were measured by RT-PCR. We determined the isometric tension of PA rings isolated from normal rats. The study with the isolated perfused lung preparation was performed in SU/HX/Nx rats. To investigate the chronic effect of UA on the development of PAH, hyperuricemia was induced by the administration of 2% oxonic acid (OA) in diet for 6-wk. Benzbromarone (BBR, 10mg/kg/day, diet, from weeks 0 to 5), a URATv1 transporter inhibitor, was administered in the SU/Hx/Nx-rats with or without 2%OA. To examine the role of XOR in PAH, XOR+/− and wild type (WT) mice were exposed to 3-wk Nx or Hx (10% O2). Results The mRNA of URATv1 was detected in the normal lungs. Isometric tension study showed that UA (8 mg/dl) inhibited acetylcholine-induced vasorelaxation. In perfused lung preparations, UA acutely increased estimated PVR in a dose-dependent manner (1.6–16.0mg/dl) with reducing cGMP levels in the lungs. BBR significantly attenuated the pressor response to UA. UA levels in the plasma and the lung tissues were significantly elevated in SU/Hx/Nx-rats with 2%OA (normal vs. vehicle vs. 2%OA, plasma: 0.24±0.01 vs. 0.80±0.14 and 1.44±0.17 mg/dl; lung tissues: 68±3 vs. 142±3 and 377±46 pmol/g tissue). They exhibited further elevation of right ventricle systolic pressure (RVSP) (31±2 vs. 72±6 vs. 101±3 mmHg) and Ea (a marker of RV afterload) (0.24±0.04 vs. 0.97±0.15 vs. 2.36±0.49 mmHg/μL) with the exacerbation of occlusive lesions of PAs. BBR had no changes in the UA levels in the plasma (1.93±0.30 mg/dL), but significantly reduced the UA levels in the lung tissues (101±10 pmol/g tissue) and attenuated the increase in RVSP (53±8mmHg) and Ea (0.21±0.05 mmHg/mL) in the SU/Hx/Nx-rats with 2%OA. On the other hand, BBR had no effects on RVSP (76±7 mmHg) and Ea (0.91±0.15 mmHg/mL) in the SU/Hx/Nx-rats without 2%OA. There were no significant differences in RVSP between XOR+/− mice with Hx and WT with Hx (26±2 vs. 26±2 mmHg). Conclusions Hyperuricemia itself impairs endothelial function and deteriorates PAH via URATv1 in a XOR-independent manner. UA can be a novel therapeutic target for PAH. Funding Acknowledgement Type of funding source: None


10.2741/3243 ◽  
2009 ◽  
Vol Volume (14) ◽  
pp. 237 ◽  
Author(s):  
Konstantinos Tziomalos

Sign in / Sign up

Export Citation Format

Share Document