scholarly journals Immunoglobulin light chain amyloidosis diagnosis and treatment algorithm 2018

2018 ◽  
Vol 8 (5) ◽  
Author(s):  
Morie A. Gertz
2021 ◽  
Vol 11 (5) ◽  
Author(s):  
M. Hasib Sidiqi ◽  
Morie A. Gertz

AbstractImmunoglobulin light chain amyloidosis (AL) commonly presents with nephrotic range proteinuria, heart failure with preserved ejection fraction, nondiabetic peripheral neuropathy, unexplained hepatomegaly or diarrhea, and should be considered in patients presenting with these symptoms. More importantly, patients being monitored for smoldering multiple myeloma and a monoclonal gammopathy of undetermined significance (MGUS) are at risk for developing AL amyloidosis. MGUS and myeloma patients that have atypical features, including unexplained weight loss; lower extremity edema, early satiety, and dyspnea on exertion should be considered at risk for light chain amyloidosis. Overlooking the diagnosis of light chain amyloidosis leading to therapy delay is common, and it represents an error of diagnostic consideration. Herein we provide a review of established and investigational treatments for patients with AL amyloidosis and provide algorithms for workup and management of these patients.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Linchun Xu ◽  
Yongzhong Su

AbstractImmunoglobulin light chain amyloidosis (AL) is an indolent plasma cell disorder characterized by free immunoglobulin light chain (FLC) misfolding and amyloid fibril deposition. The cytogenetic pattern of AL shows profound similarity with that of other plasma cell disorders but harbors distinct features. AL can be classified into two primary subtypes: non-hyperdiploidy and hyperdiploidy. Non-hyperdiploidy usually involves immunoglobulin heavy chain translocations, and t(11;14) is the hallmark of this disease. T(11;14) is associated with low plasma cell count but high FLC level and displays distinct response outcomes to different treatment modalities. Hyperdiploidy is associated with plasmacytosis and subclone formation, and it generally confers a neutral or inferior prognostic outcome. Other chromosome abnormalities and driver gene mutations are considered as secondary cytogenetic aberrations that occur during disease evolution. These genetic aberrations contribute to the proliferation of plasma cells, which secrete excess FLC for amyloid deposition. Other genetic factors, such as specific usage of immunoglobulin light chain germline genes and light chain somatic mutations, also play an essential role in amyloid fibril deposition in AL. This paper will propose a framework of AL classification based on genetic aberrations and discuss the amyloid formation of AL from a genetic aspect.


2015 ◽  
Vol 102 (2) ◽  
pp. 200-204 ◽  
Author(s):  
Kazuya Ishiguro ◽  
Toshiaki Hayashi ◽  
Tetsuyuki Igarashi ◽  
Yumiko Maruyama ◽  
Hiroshi Ikeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document