anticoagulant activity
Recently Published Documents


TOTAL DOCUMENTS

1566
(FIVE YEARS 246)

H-INDEX

74
(FIVE YEARS 10)

2022 ◽  
Vol 12 ◽  
Author(s):  
Dakota L. Pouncey ◽  
Dustyn A. Barnette ◽  
Riley W. Sinnott ◽  
Sarah J. Phillips ◽  
Noah R. Flynn ◽  
...  

Coumadin (R/S-warfarin) anticoagulant therapy is highly efficacious in preventing the formation of blood clots; however, significant inter-individual variations in response risks over or under dosing resulting in adverse bleeding events or ineffective therapy, respectively. Levels of pharmacologically active forms of the drug and metabolites depend on a diversity of metabolic pathways. Cytochromes P450 play a major role in oxidizing R- and S-warfarin to 6-, 7-, 8-, 10-, and 4′-hydroxywarfarin, and warfarin alcohols form through a minor metabolic pathway involving reduction at the C11 position. We hypothesized that due to structural similarities with warfarin, hydroxywarfarins undergo reduction, possibly impacting their pharmacological activity and elimination. We modeled reduction reactions and carried out experimental steady-state reactions with human liver cytosol for conversion of rac-6-, 7-, 8-, 4′-hydroxywarfarin and 10-hydroxywarfarin isomers to the corresponding alcohols. The modeling correctly predicted the more efficient reduction of 10-hydroxywarfarin over warfarin but not the order of the remaining hydroxywarfarins. Experimental studies did not indicate any clear trends in the reduction for rac-hydroxywarfarins or 10-hydroxywarfarin into alcohol 1 and 2. The collective findings indicated the location of the hydroxyl group significantly impacted reduction selectivity among the hydroxywarfarins, as well as the specificity for the resulting metabolites. Based on studies with R- and S-7-hydroxywarfarin, we predicted that all hydroxywarfarin reductions are enantioselective toward R substrates and enantiospecific for S alcohol metabolites. CBR1 and to a lesser extent AKR1C3 reductases are responsible for those reactions. Due to the inefficiency of reactions, only reduction of 10-hydroxywarfarin is likely to be important in clearance of the metabolite. This pathway for 10-hydroxywarfarin may have clinical relevance as well given its anticoagulant activity and capacity to inhibit S-warfarin metabolism.


ADMET & DMPK ◽  
2022 ◽  
Author(s):  
Andrei Bogdanov ◽  
Olga Tsivileva ◽  
Alexandra Voloshina ◽  
Anna Lyubina ◽  
Syumbelya Amerhanova ◽  
...  

A series of biorelevant triethylammonium isatin hydrazones containing various substituents in the aromatic fragment have been synthesized. Their structure and composition were confirmed by NMR- and IR-spectroscopies, mass-spectrometry and elemental analysis. It was found that some representatives show activity against Staphylococcus aureus and Bacillus cereus higher or at the level of norfloxacin, including methicillin-resistant Staphylococcus aureus strains. The study also showed low hemo- and cytotoxicity (Chang Liver) and high antiaggregatory and anticoagulant activity of these compounds. The high potential of new ammonium isatin-3-acylhydrazones in the search for antimicrobial activity against phytopathogens of bacterial and fungal nature has been shown for the first time.  


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Ethan S FitzGerald ◽  
Amanda M Jamieson

Mast et al. analyzed transcriptome data derived from RNA-sequencing (RNA-seq) of COVID-19 patient bronchoalveolar lavage fluid (BALF) samples, as compared to BALF RNA-seq samples from a study investigating microbiome and inflammatory interactions in obese and asthmatic adults (Mast et al., 2021). Based on their analysis of these data, Mast et al. concluded that mRNA expression of key regulators of the extrinsic coagulation cascade and fibrinolysis were significantly reduced in COVID-19 patients. Notably, they reported that the expression of the extrinsic coagulation cascade master regulator Tissue Factor (F3) remained unchanged, while there was an 8-fold upregulation of its cognate inhibitor Tissue Factor Pathway Inhibitor (TFPI). From this they conclude that “pulmonary fibrin deposition does not stem from enhanced local [tissue factor] production and that counterintuitively, COVID-19 may dampen [tissue factor]-dependent mechanisms in the lungs”. They also reported decreased Activated Protein C (aPC) mediated anticoagulant activity and major increases in fibrinogen expression and other key regulators of clot formation. Many of these results are contradictory to findings in most of the field, particularly the findings regarding extrinsic coagulation cascade mediated coagulopathies. Here, we present a complete re-analysis of the data sets analyzed by Mast et al. This re-analysis demonstrates that the two data sets utilized were not comparable between one another, and that the COVID-19 sample set was not suitable for the transcriptomic analysis Mast et al. performed. We also identified other significant flaws in the design of their retrospective analysis, such as poor-quality control and filtering standards. Given the issues with the datasets and analysis, their conclusions are not supported.


2022 ◽  
pp. 2107852
Author(s):  
Imran Ozer ◽  
George A. Pitoc ◽  
Juliana M. Layzer ◽  
Angelo Moreno ◽  
Lyra B. Olson ◽  
...  

ChemBioChem ◽  
2022 ◽  
Author(s):  
Nathalie Busschaert ◽  
Debabrata Maity ◽  
Pralok K. Samanta ◽  
Niall J. English ◽  
Andrew D. Hamilton

2022 ◽  
Vol 12 ◽  
Author(s):  
Igor Sibon ◽  
Mikael Mazighi ◽  
Didier Smadja

Background: The occurrence of both ischaemic (IS) and haemorrhagic stroke in patients on anticoagulation is a major issue due to the frequency of their prescriptions in westernised countries and the expected impact of anticoagulant activity on recanalization during an IS or on the outcomes associated with intracerebral haemorrhage (ICH). Several guidelines are available but sometimes differ in their conclusions or regarding specific issues, and their application in routine emergency settings may be limited by particular individual issues or heterogeneous local specificities.Methods: Based on the current guidelines and additional published data, the algorithms proposed in this paper aim to help the decision-making process regarding stroke management in the setting of concurrent anticoagulants by addressing specific clinical situations based on clinical variables commonly encountered in real-world practise.Results: For patients on non–vitamin K oral anticoagulants, reversion can be achieved with specific antidotes, but only idarucizumab, the specific dabigatran antidote, is indicated in both IS and ICH. Due to the low risk of a prothrombotic effect, idarucizumab can be immediately used in IS patients eligible for thrombolysis before the dabigatran concentration is known. To optimise ICH management, the time since symptom onset, with thresholds proposed at 6 and 9 hours based on the expected timing of haematoma expansion, could also to be taken into account.Conclusions: Anticoagulant reversal in patients presenting with a stroke remains a major issue, and algorithms based on a step-by-step approach may be useful for clinical practise. Real-life studies strongly support the benefits of idarucizumab availability in stroke units and emergency departments.


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 50
Author(s):  
Guanlan Chen ◽  
Rui Zeng ◽  
Xin Wang ◽  
Hongying Cai ◽  
Jiajia Chen ◽  
...  

Clam heparinoid G2 (60.25 kDa) and its depolymerized derivatives DG1 (24.48 kDa) and DG2 (6.75 kDa) prepared from Coelomactra antiquata have been documented to have excellent fibrinolytic and anticoagulant activity. In this study, to further explore the antithrombotic activity of G2, DG1 and DG2, azure A, sheep plasma, and clot lytic rate assays were used to determine their anticoagulant and thrombolytic activity in vitro. The results indicated that the anticoagulant titer of G2 was approximately 70% that of heparin and the thrombolytic activity of DG2 was greater than G2, DG1, and heparin activities. Moreover, in a carrageenan-induced venous thrombosis model, oral administration of G2 and DG1 each at 20 mg/kg and 40 mg/kg for 7 days significantly reduced blacktail thrombus formation, increased tissue-type plasminogen activator, fibrin degradation products, and D-dimer levels, decreased von Willebrand factor and thromboxane B2 levels, and restored phylum and genus abundance changes of intestinal bacteria. DG2 had no antithrombotic effect. At 20 mg/kg, G2, DG1, and heparin had comparable antithrombotic activities, and DG1 at 40 mg/kg had more muscular antithrombotic activity than G2. Thus, DG1 could be an antithrombotic oral agent owing to its more robust antithrombotic activity and lower molecular weight.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 274
Author(s):  
Konstantin V. Savateev ◽  
Victor V. Fedotov ◽  
Vladimir L. Rusinov ◽  
Svetlana K. Kotovskaya ◽  
Alexandr A. Spasov ◽  
...  

Hypercytokinemia, or cytokine storm, is one of the severe complications of viral and bacterial infections, involving the release of abnormal amounts of cytokines, resulting in a massive inflammatory response. Cytokine storm is associated with COVID-19 and sepsis high mortality rate by developing epithelial dysfunction and coagulopathy, leading to thromboembolism and multiple organ dysfunction syndrome. Anticoagulant therapy is an important tactic to prevent thrombosis in sepsis and COVID-19, but recent data show the incompatibility of modern direct oral anticoagulants and antiviral agents. It seems relevant to develop dual-action drugs with antiviral and anticoagulant properties. At the same time, it was shown that azolo[1,5-a]pyrimidines are heterocycles with a broad spectrum of antiviral activity. We have synthesized a new family of azolo[1,5-a]pyrimidines and their condensed polycyclic analogs by cyclocondensation reactions and direct CH-functionalization and studied their anticoagulant properties. Five compounds among 1,2,4-triazolo[1,5-a]pyrimidin-7-ones and 5-alkyl-1,3,4-thiadiazolo[3,2-a]purin-8-ones demonstrated higher anticoagulant activity than the reference drug, dabigatran etexilate. Antithrombin activity of most active compounds was confirmed using lipopolysaccharide (LPS)-treated blood to mimic the conditions of cytokine release syndrome. The studied compounds affected only the thrombin time value, reliably increasing it 6.5–15.2 times as compared to LPS-treated blood.


2022 ◽  
Vol 10 (1) ◽  
pp. 1-7
Author(s):  
Ashwini Gawade ◽  
Sanjay Boldhane ◽  
Anil Pawar ◽  
Rohini Pujari ◽  
Ashwin Kuchekar

Sign in / Sign up

Export Citation Format

Share Document