scholarly journals Heme-stress activated NRF2 skews fate trajectories of bone marrow cells from dendritic cells towards red pulp-like macrophages in hemolytic anemia

Author(s):  
Florence Vallelian ◽  
Raphael M. Buzzi ◽  
Marc Pfefferlé ◽  
Ayla Yalamanoglu ◽  
Irina L. Dubach ◽  
...  

AbstractHeme is an erythrocyte-derived toxin that drives disease progression in hemolytic anemias, such as sickle cell disease. During hemolysis, specialized bone marrow-derived macrophages with a high heme-metabolism capacity orchestrate disease adaptation by removing damaged erythrocytes and heme-protein complexes from the blood and supporting iron recycling for erythropoiesis. Since chronic heme-stress is noxious for macrophages, erythrophagocytes in the spleen are continuously replenished from bone marrow-derived progenitors. Here, we hypothesized that adaptation to heme stress progressively shifts differentiation trajectories of bone marrow progenitors to expand the capacity of heme-handling monocyte-derived macrophages at the expense of the homeostatic generation of dendritic cells, which emerge from shared myeloid precursors. This heme-induced redirection of differentiation trajectories may contribute to hemolysis-induced secondary immunodeficiency. We performed single-cell RNA-sequencing with directional RNA velocity analysis of GM-CSF-supplemented mouse bone marrow cultures to assess myeloid differentiation under heme stress. We found that heme-activated NRF2 signaling shifted the differentiation of bone marrow cells towards antioxidant, iron-recycling macrophages, suppressing the generation of dendritic cells in heme-exposed bone marrow cultures. Heme eliminated the capacity of GM-CSF-supplemented bone marrow cultures to activate antigen-specific CD4 T cells. The generation of functionally competent dendritic cells was restored by NRF2 loss. The heme-induced phenotype of macrophage expansion with concurrent dendritic cell depletion was reproduced in hemolytic mice with sickle cell disease and spherocytosis and associated with reduced dendritic cell functions in the spleen. Our data provide a novel mechanistic underpinning of hemolytic stress as a driver of hyposplenism-related secondary immunodeficiency.

2021 ◽  
Author(s):  
Florence Vallelian ◽  
Raphael M Buzzi ◽  
Marc Pfefferle ◽  
Ayla Yalamanoglu ◽  
Andreas Wassmer ◽  
...  

Heme is an erythrocyte-derived toxin that drives disease progression in hemolytic anemias, such as sickle cell disease. During hemolysis, specialized bone marrow-derived macrophages with a high heme-metabolism capacity orchestrate disease adaptation by removing damaged erythrocytes and heme-protein complexes from the blood and supporting iron recycling for erythropoiesis. Since chronic heme-stress is noxious for macrophages, erythrophagocytes in the spleen are continuously replenished from bone marrow-derived progenitors. Here, we hypothesized that adaptation to heme stress progressively shifts differentiation trajectories of BM progenitors to expand the capacity of heme-handling monocyte-derived macrophages at the expense of the homeostatic generation of dendritic cells, which emerge from shared myeloid precursors. This heme-induced redirection of differentiation trajectories may contribute to hemolysis-induced secondary immunodeficiency. We performed single-cell RNA sequencing with directional RNA velocity analysis of GM-CSF-supplemented mouse bone marrow cultures to assess myeloid differentiation under heme stress. We found that heme-activated NRF2 signaling shifted the differentiation of bone marrow cells towards antioxidant, iron-recycling macrophages, suppressing the generation of dendritic cells in heme-exposed bone marrow cultures. Heme eliminated the capacity of GM-CSF-supplemented bone marrow cultures to activate antigen-specific CD4 T cells. The generation of functionally competent dendritic cells was restored by NRF2 loss. The heme-induced phenotype of macrophage expansion with concurrent dendritic cell depletion was reproduced in hemolytic mice with sickle cell disease and spherocytosis and associated with reduced dendritic cell functions in the spleen. Our data provide a novel mechanistic underpinning of hemolytic stress as a driver of hyposplenism-related secondary immunodeficiency.


1986 ◽  
Vol 163 (4) ◽  
pp. 872-883 ◽  
Author(s):  
W E Bowers ◽  
M R Berkowitz

Although dendritic cells (DC) originate from bone marrow, they were not observed in fresh preparations of bone marrow cells (BMC). Likewise, accessory activity was barely measurable in a sensitive assay for this potent function of DC. However, both DC and accessory activity developed when BMC were cultured for 5 d. Based on fractionation before culture, nearly all of the accessory activity could be attributed to only 5% of the total BMC recovered in a low-density (LD) fraction. The LD-DC precursors differed from mature DC in a number of important respects. Removal of Ia+ cells from the LD fraction by panning did not decrease the production of DC when the nonadherent cells were cultured. Thus, the cell from which the DC is derived does not express or minimally expresses Ia antigens, in contrast to the strongly Ia+ DC that is produced in bone marrow cultures. Irradiation of LD cells before culture prevented the development of DC. When irradiation was delayed by daily intervals, progressive increases in the number of DC resulted, up to the fifth day. These findings, together with preliminary autoradiographic data, indicate that cell division has occurred, in contrast to the DC, which does not divide. We conclude that bone marrow-derived DC arise in culture from the division of LD, Ia- precursors.


1995 ◽  
Vol 182 (4) ◽  
pp. 1111-1119 ◽  
Author(s):  
J W Young ◽  
P Szabolcs ◽  
M A Moore

Several cytokines, especially granulocyte/macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor alpha (TNF-alpha), have been identified that foster the development of dendritic cells from blood and bone marrow precursors in suspension cultures. These precursors are reported to be infrequent or to yield small numbers of dendritic cells in colony-forming assays. Here we readily identify dendritic cell colony-forming units (CFU-DC) that give rise to pure dendritic cell colonies. Human CD34+ bone marrow progenitors were expanded in semi-solid cultures with serum-replete medium containing c-kit-ligand, GM-CSF, and TNF-alpha. The addition of TNF-alpha to GM-CSF did not alter the number of typical GM colonies but did generate pure dendritic cell colonies that accounted for approximately 40% of the total colony growth. When the two distinct types of colonies were plucked from methylcellulose and tested for T cell-stimulatory activity in the mixed leukocyte reaction, the potency of colony-derived dendritic cells exceeded that of CFU-GM progeny from the same cultures by at least 1.5-2 logs. Immunophenotyping and cytochemical staining of the CFU-DC-derived progeny was also characteristic of dendritic cells. Other myeloid cells were not identified in these colonies. The addition of c-kit-ligand to GM-CSF- and TNF-alpha-supplemented suspensions of CD34+ bone marrow cells expanded CFU-DCs almost 100-fold by 14 d. We conclude that normal human CD34+ bone marrow cells include substantial numbers of clonogenic progenitors, distinct from CFU-GMs, that can give rise to pure dendritic cell colonies. These CFU-DCs can be expanded for several weeks by in vitro culture with c-kit-ligand, and their differentiation requires exogenous TNF-alpha in addition to GM-CSF. We speculate that this dendritic cell-committed pathway may in the steady state contribute cells to the epidermis and afferent lymph, where dendritic cells are the principal myeloid cell type, and may increase the numbers of these specialized antigen-presenting cells during T cell-mediated immune responses.


Immunity ◽  
2015 ◽  
Vol 42 (6) ◽  
pp. 1197-1211 ◽  
Author(s):  
Julie Helft ◽  
Jan Böttcher ◽  
Probir Chakravarty ◽  
Santiago Zelenay ◽  
Jatta Huotari ◽  
...  

1979 ◽  
Author(s):  
K. L. Kellar ◽  
B. L. Evatt ◽  
C. R. McGrath ◽  
R. B. Ramsey

Liquid cultures of bone marrow cells enriched for megakaryocytes were assayed for incorporation of 3H-thymidine (3H-TdR) into acid-precipitable cell digests to determine the effect of thrombopoietin on DNA synthesis. As previously described, thrombopoietin was prepared by ammonium sulfate fractionation of pooled plasma obtained from thrombocytopenic rabbits. A control fraction was prepared from normal rabbit plasma. The thrombopoietic activity of these fractions was determined in vivo with normal rabbits as assay animals and the rate of incorporation of 75Se-selenomethionine into newly formed platelets as an index of thrombopoietic activity of the infused material. Guinea pig megakaryocytes were purified using bovine serum albumin gradients. Bone marrow cultures containing 1.5-3.0x104 cells and 31%-71% megakaryocytes were incubated 18 h in modified Dulbecco’s MEM containing 10% of the concentrated plasma fractions from either thrombocytopenic or normal rabbits. In other control cultures, 0.9% NaCl was substituted for the plasma fractions. 3H-TdR incorporation was measured after cells were incubated for 3 h with 1 μCi/ml. The protein fraction containing thrombopoietin-stimulating activity caused a 25%-31% increase in 3H-TdR incorporation over that in cultures which were incubated with the similar fraction from normal plasma and a 29% increase over the activity in control cultures to which 0.9% NaCl had been added. These data suggest that thrombopoietin stimulates DNA synthesis in megakaryocytes and that this tecnique may be useful in assaying thrombopoietin in vitro.


Blood ◽  
1978 ◽  
Vol 52 (2) ◽  
pp. 355-361
Author(s):  
HP Koeffler ◽  
DW Golde

Bone marrow cells from three preleukemic patients with prominent marrow karyotypic abnormalities were studied in liquid culture to determine if the neoplastic clones were capable of maturation. Parallel cytogenetic and cytologic studies were performed in sequentially harvested bone marrow cultures. Maturation, albeit delayed, occurred in cultures from all three patients. By 14 days of culture in vitro, morphologic, cytochemical, and functional evidence of maturation was observed in about 70% of the cells. By day 21, 85% of the cells were mature by these criteria. All but 2 of 249 metaphases from the cultured cells contained the cytogenetic abnormality of the neoplastic clone. We conclude that some preleukemic cells identified by a chromosomal abnormality can mature in vitro. Preleukemia may be viewed as a syndrome of “early leukemia” in which the neoplastic clone is established and manifested functionally as ineffective hematopoiesis. Hematopoietic cell differentiation becomes progressively abnormal with termination in the nearly complete maturational block characteristic of acute myelogenous leukemia.


Sign in / Sign up

Export Citation Format

Share Document