scholarly journals Functional tissue-engineered bone-like graft made of a fibrin scaffold and TG2 gene-modified EMSCs for bone defect repair

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wentao Shi ◽  
Yunduan Que ◽  
Xuan Zhang ◽  
Lu Bian ◽  
Xuejian Yu ◽  
...  

AbstractThe transplantation of tissue-engineered scaffolds with stem cells is a promising therapeutic approach for bone defect repair. To improve the therapeutic efficacy of this approach, in this study, a novel biofunctional live tissue-engineered bone-like graft was designed and constructed using a fibrin scaffold loaded with TG2 gene-modified ectomesenchymal stem cells (TG2-EMSCs) derived from nasal respiratory mucosa for bone defect repair. Autocalcification of the cell-free fibrin gel in osteogenic medium with additional alkaline phosphatase (ALP) and the osteogenic differentiation of TG2-EMSCs on the fibrin scaffold were assessed in vitro. The results indicated that the cell-free fibrin gel could autocalcify in the osteogenic medium with ALP and that the overexpression of TG2 by TG2-EMSCs could promote the osteogenic differentiation of these stem cells in the fibrin scaffold. Moreover, TG2 could enhance the deposition of extracellular matrix proteins in the fibrin scaffold, followed by calcification of the bone matrix in vitro. After transplantation into critical-sized cranial defects in rats, the functional tissue-engineered bone-like grafts improved bone regeneration. These results indicate that this tissue-engineered bone-like graft could improve the process of bone defect repair.

2021 ◽  
Author(s):  
Yantong Wang ◽  
Simin Zhang ◽  
Haoqing Yang ◽  
Yangyang Cao ◽  
Dianqin Yu ◽  
...  

Abstract Background: To investigate the effect of miR‐196a-5p on the osteogenic differentiation and defected bone repair of Wharton’s jelly umbilical cord stem cells (WJCMSCs). Methods: miR‐196a-5p mimic or inhibitor was applied to overexpress or silence miR‐196a-5p expression in WJCMSCs. The alkaline phosphatase (ALP) activity, mineralization ability, and osteogenic markers expression were used to test WJCMSCs osteogenic potential in vitro. Calvarial bone defect model of rat was used to evaluate WJCMSCs bone regeneration ability in vivo. mRNA microarray was used to reveal the underling mechanisms that miR‐196a-5p regulated bone repair.Results: miR-196a-5p inhibition reduced the ALP activity, mineralization ability, and level of osteogenic markers OCN, DSPP, DMP1 and BSP, while miR-196a-5p overexpression enhanced the ALP activity, mineralization ability, and level of OCN, DSPP, DMP1 and BSP of WJCMSCs in vitro. Next, the micro-CT and histopathology results showed miR-196a-5p-overexpressed-WJCMSCs obviously promoted the new bone tissue regeneration and calvarial bone defect repair after MSCs transplanted for 12 weeks. Further, mRNA microarray of miR-196a-5p-overexpressed-WJCMSCs revealed totally 959 significantly differentially expressed genes (DEGs), among which 34 upregulated and 925 downregulated. Also, 241 miR-196a-5p targeted genes were predicted by using miRNA targeted websites and only 19 predicted genes were consistent with microarray results. On this basis, one significantly downregulated gene SERPINB2 was selected and revealed that SERPINB2 deletion obviously enhanced the ALP activity and mineralization ability of WJCMSCs in vitro.Conclusions: miR-196a-5p promoted the osteogenic differentiation potential and calvarial bone defect repair ability of WJCMSCs. And SERPINB2 acted as one key downstream gene to participate in the miR-196a-5p promoted MSCs osteogenic differentiation.


2015 ◽  
Vol 2 (6) ◽  
pp. 340
Author(s):  
Trung-Hau Lê Thua ◽  
Dang-Nhat Pham ◽  
Khanh-Linh Lê ◽  
Minh-Tuan Lê ◽  
Quang-Ton-Quyen Nguyen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document