scholarly journals Understanding the role of nACE2 in neurogenic hypertension among COVID-19 patients

Author(s):  
Prakash G. Kulkarni ◽  
Amul Sakharkar ◽  
Tanushree Banerjee
Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Rohan U Parekh ◽  
Abdel A Abdel-rahman ◽  
Srinivas Sriramula

Hyperactivity of the orexin system contributes to several animal models of hypertension and enhances arginine vasopressin (AVP) release. We previously reported higher neuronal kinin B1 receptor (B1R) expression and brain AVP levels in hypertensive mice. However, the role of B1R and its interaction with orexin system in neurogenic hypertension have not been studied. In the present study, we tested the hypothesis that kinin B1R contributes to hypertension by upregulation of orexin-AVP signaling in the brain. Deoxycorticosterone acetate (DOCA)-salt treatment (1 mg/g body weight DOCA, 1% saline in drinking water, 3 weeks) of wild-type (WT) male mice produced a significant increase in mean arterial pressure (MAP; radio-telemetry) (138 ±3 mmHg, n=8, p<0.01) that was blunted in B1R knockout mice (121±2 mmHg, P <0.05 vs. WT+DOCA). In WT mice, DOCA-salt, compared to vehicle, increased mRNA levels of orexin receptor 1 (2.5 fold, n=9, p<0.001), orexin receptor 2 (3 fold, n=9, p<0.001) and AVP (3 fold, n=9, p<0.01) in the hypothalamic paraventricular nucleus (PVN), and these DOCA-salt evoked effects were attenuated in B1RKO mice. Similarly, DOCA-salt evoked increases in protein expression of orexin receptor 1 and 2 in the hypothalamic PVN of WT mice were attenuated by 25±5% and 33±5% (p<0.05), respectively, in B1RKO vs WT+DOCA mice. Furthermore, DOCA-salt treatment increased plasma AVP levels in WT mice compared to vehicle treated mice (13.69±1.1 vs. 47.86±8.7 pg/ml, p<0.05), but not in B1RKO mice. Together, these data provide novel evidence that kinin B1R plays an important role in mediating DOCA-salt induced hypertension possibly via upregulating the orexin-AVP signaling in the brain.


2018 ◽  
Author(s):  
◽  
Jennifer Magnusson

We seek to address the extent to which a specific loss of 5-hydroxytryptamine (5-HT) affects the control of respiration, arterial blood pressure (ABP) and heart rate (HR) across vigilance-states based on existing evidence suggesting that 5-HT defects increase the risk for Sudden Infant Death Syndrome (SIDS) and neurogenic hypertension. SIDS is the leading cause of infant mortality between 1 month and 1 year of age, occurs during sleep, and up to 70% of all SIDS cases have at least one 5-HT system abnormality. Neonatal rodents lacking central 5-HT exhibit severe apneas, and a reduced ABP and HR. Central 5-HT has been implicated in the etiology of neurogenic hypertension, presumably due to projections of 5-HT neurons within the midline raphe to vagal and presympathetic regions of the brain. However, data from studies examining the specific role of central 5-HT function is conflicting or inconclusive. Neurogenic hypertension accounts for more than 90% of all hypertensive cases and the normal fall in ABP that occurs during non-rapid eye movement sleep is absent in some patients with hypertension. Understanding the mechanisms associated with the development of hypertension is critical not only to lower blood pressure, but to lower its associated cardiovascular events. The purpose of this dissertation is to examine the role of central 5-HT in the control of ABP during sleep and reveal, mechanistically, the physiological role of 5-HT in the autonomic control of ABP in neonatal and adult rodents. The overarching hypothesis for this dissertation is that central 5-HT is required for the maintenance of ABP and autonomic tone at rest in both neonatal and adult rodents.


2000 ◽  
Vol 42 (2) ◽  
pp. 99-103 ◽  
Author(s):  
D. Johnson ◽  
S. C. Coley ◽  
J. Brown ◽  
I. F. Moseley

2018 ◽  
Vol 6 (3) ◽  
pp. 129-131
Author(s):  
Nathaniel Edward Hayward ◽  
Paul MacDaragh Ryan ◽  
Ryan Taylor Sless

1993 ◽  
Vol 79 (6) ◽  
pp. 924-928 ◽  
Author(s):  
Lawrence D. Dickinson ◽  
Stephen M. Papadopoulos ◽  
Julian T. Hoff

✓ The authors report the resolution of essential hypertension following transoral odontoidectomy and medullary decompression in a 39-year-old woman with basilar invagination. Current understanding of central regulation of the cardiovascular system is discussed and the pertinent neuroanatomy illustrated. Experimental and clinical evidence supporting the role of neurogenic mechanisms in the pathogenesis of hypertension is reviewed.


Sign in / Sign up

Export Citation Format

Share Document