scholarly journals Cryo-EM structure of the respiratory syncytial virus RNA polymerase

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Dongdong Cao ◽  
Yunrong Gao ◽  
Claire Roesler ◽  
Samantha Rice ◽  
Paul D’Cunha ◽  
...  
2020 ◽  
Vol 6 (10) ◽  
pp. 2800-2811
Author(s):  
Anand Balakrishnan ◽  
Edmund Price ◽  
Catherine Luu ◽  
Jacob Shaul ◽  
Charles Wartchow ◽  
...  

2013 ◽  
Vol 23 (24) ◽  
pp. 6789-6793 ◽  
Author(s):  
Hui Xiong ◽  
Melinda Foulk ◽  
Lisa Aschenbrenner ◽  
Jun Fan ◽  
Choi-Lai Tiong-Yip ◽  
...  

2015 ◽  
Vol 11 (6) ◽  
pp. e1004995 ◽  
Author(s):  
Jerome Deval ◽  
Jin Hong ◽  
Guangyi Wang ◽  
Josh Taylor ◽  
Lucas K. Smith ◽  
...  

Biochemistry ◽  
2016 ◽  
Vol 55 (10) ◽  
pp. 1441-1454 ◽  
Author(s):  
María G. Noval ◽  
Sebastian A. Esperante ◽  
Ivana G. Molina ◽  
Lucía B. Chemes ◽  
Gonzalo de Prat-Gay

1999 ◽  
Vol 73 (1) ◽  
pp. 251-259 ◽  
Author(s):  
Ursula J. Buchholz ◽  
Stefan Finke ◽  
Karl-Klaus Conzelmann

ABSTRACT In order to generate recombinant bovine respiratory syncytial virus (BRSV), the genome of BRSV strain A51908, variant ATue51908, was cloned as cDNA. We provide here the sequence of the BRSV genome ends and of the entire L gene. This completes the sequence of the BRSV genome, which comprises a total of 15,140 nucleotides. To establish a vaccinia virus-free recovery system, a BHK-derived cell line stably expressing T7 RNA polymerase was generated (BSR T7/5). Recombinant BRSV was reproducibly recovered from cDNA constructs after T7 RNA polymerase-driven expression of antigenome sense RNA and of BRSV N, P, M2, and L proteins from transfected plasmids. Chimeric viruses in which the BRSV leader region was replaced by the human respiratory syncytial virus (HRSV) leader region replicated in cell culture as efficiently as their nonchimeric counterparts, demonstrating that allcis-acting sequences of the HRSV promoter are faithfully recognized by the BRSV polymerase complex. In addition, we report the successful recovery of a BRSV mutant lacking the complete NS2 gene, which encodes a nonstructural protein of unknown function. The NS2-deficient BRSV replicated autonomously and could be passaged, demonstrating that NS2 is not essential for virus replication in cell culture. However, growth of the mutant was considerably slower than and final infectious titers were reduced by a factor of at least 10 compared to wild-type BRSV, indicating that NS2 provides a supporting factor required for full replication capacity.


2006 ◽  
Vol 87 (7) ◽  
pp. 1805-1821 ◽  
Author(s):  
Vanessa M. Cowton ◽  
David R. McGivern ◽  
Rachel Fearns

Human respiratory syncytial virus (RSV) is the leading cause of paediatric respiratory disease and is the focus of antiviral- and vaccine-development programmes. These goals have been aided by an understanding of the virus genome architecture and the mechanisms by which it is expressed and replicated. RSV is a member of the order Mononegavirales and, as such, has a genome consisting of a single strand of negative-sense RNA. At first glance, transcription and genome replication appear straightforward, requiring self-contained promoter regions at the 3′ ends of the genome and antigenome RNAs, short cis-acting elements flanking each of the genes and one polymerase. However, from these minimal elements, the virus is able to generate an array of capped, methylated and polyadenylated mRNAs and encapsidated antigenome and genome RNAs, all in the appropriate ratios to facilitate virus replication. The apparent simplicity of genome expression and replication is a consequence of considerable complexity in the polymerase structure and its cognate cis-acting sequences; here, our understanding of mechanisms by which the RSV polymerase proteins interact with signals in the RNA template to produce different RNA products is reviewed.


Sign in / Sign up

Export Citation Format

Share Document