scholarly journals A spinal neural circuitry for converting touch to itch sensation

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sihan Chen ◽  
Xiao-Fei Gao ◽  
Yuxi Zhou ◽  
Ben-Long Liu ◽  
Xian-Yu Liu ◽  
...  

Abstract Touch and itch sensations are crucial for evoking defensive and emotional responses, and light tactile touch may induce unpleasant itch sensations (mechanical itch or alloknesis). The neural substrate for touch-to-itch conversion in the spinal cord remains elusive. We report that spinal interneurons expressing Tachykinin 2-Cre (Tac2Cre) receive direct Aβ low threshold mechanoreceptor (LTMR) input and form monosynaptic connections with GRPR neurons. Ablation or inhibition markedly reduces mechanical but not acute chemical itch nor noxious touch information. Chemogenetic inhibition of Tac2Cre neurons also displays pronounced deficit in chronic dry skin itch, a type of chemical itch in mice. Consistently, ablation of gastrin-releasing peptide receptor (GRPR) neurons, which are essential for transmitting chemical itch, also abolishes mechanical itch. Together, these results suggest that innocuous touch and chemical itch information converge on GRPR neurons and thus map an exquisite spinal circuitry hard-wired for converting innocuous touch to irritating itch.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rita Bardoni ◽  
Kai-Feng Shen ◽  
Hui Li ◽  
Joseph Jeffry ◽  
Devin M. Barry ◽  
...  

Abstract It has been known that algogens and cooling could inhibit itch sensation; however, the underlying molecular and neural mechanisms remain poorly understood. Here, we show that the spinal neurons expressing gastrin releasing peptide receptor (GRPR) primarily comprise excitatory interneurons that receive direct and indirect inputs from C and Aδ fibers and form contacts with projection neurons expressing the neurokinin 1 receptor (NK1R). Importantly, we show that noxious or cooling agents inhibit the activity of GRPR neurons via GABAergic signaling. By contrast, capsaicin, which evokes a mix of itch and pain sensations, enhances both excitatory and inhibitory spontaneous synaptic transmission onto GRPR neurons. These data strengthen the role of GRPR neurons as a key circuit for itch transmission and illustrate a spinal mechanism whereby pain inhibits itch by suppressing the function of GRPR neurons.


Nature ◽  
2007 ◽  
Vol 448 (7154) ◽  
pp. 700-703 ◽  
Author(s):  
Yan-Gang Sun ◽  
Zhou-Feng Chen

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1160
Author(s):  
Adrien Chastel ◽  
Delphine Vimont ◽  
Stephane Claverol ◽  
Marion Zerna ◽  
Sacha Bodin ◽  
...  

Background: [68Ga]Ga-RM2 is a potent Gastrin-Releasing Peptide-receptor (GRP-R) antagonist for imaging prostate cancer and breast cancer, currently under clinical evaluation in several specialized centers around the world. Targeted radionuclide therapy of GRP-R-expressing tumors is also being investigated. We here report the characteristics of a kit-based formulation of RM2 that should ease the development of GRP-R imaging and make it available to more institutions and patients. Methods: Stability of the investigated kits over one year was determined using LC/MS/MS and UV-HPLC. Direct 68Ga-radiolabeling was optimized with respect to buffer (pH), temperature, reaction time and shaking time. Conventionally prepared [68Ga]Ga-RM2 using an automated synthesizer was used as a comparator. Finally, the [68Ga]Ga-RM2 product was assessed with regards to hydrophilicity, affinity, internalization, membrane bound fraction, calcium mobilization assay and efflux, which is a valuable addition to the in vivo literature. Results: The kit-based formulation, kept between 2 °C and 8 °C, was stable for over one year. Using acetate buffer pH 3.0 in 2.5–5.1 mL total volume, heating at 100 °C during 10 min and cooling down for 5 min, the [68Ga]Ga-RM2 produced by kit complies with the requirements of the European Pharmacopoeia. Compared with the module production route, the [68Ga]Ga-RM2 produced by kit was faster, displayed higher yields, higher volumetric activity and was devoid of ethanol. In in vitro evaluations, the [68Ga]Ga-RM2 displayed sub-nanomolar affinity (Kd = 0.25 ± 0.19 nM), receptor specific and time dependent membrane-bound fraction of 42.0 ± 5.1% at 60 min and GRP-R mediated internalization of 24.4 ± 4.3% at 30 min. The [natGa]Ga-RM2 was ineffective in stimulating intracellular calcium mobilization. Finally, the efflux of the internalized activity was 64.3 ± 6.5% at 5 min. Conclusion: The kit-based formulation of RM2 is suitable to disseminate GRP-R imaging and therapy to distant hospitals without complex radiochemistry equipment.


Sign in / Sign up

Export Citation Format

Share Document