gastrin releasing peptide
Recently Published Documents


TOTAL DOCUMENTS

1287
(FIVE YEARS 111)

H-INDEX

60
(FIVE YEARS 5)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Qing-Tao Meng ◽  
Xian-Yu Liu ◽  
Xue-Ting Liu ◽  
Juan Liu ◽  
Admire Munanairi ◽  
...  

Histamine-dependent and -independent itch is conveyed by parallel peripheral neural pathways that express gastrin-releasing peptide (GRP) and neuromedin B (NMB), respectively, to the spinal cord of mice. B-type natriuretic peptide (BNP) has been proposed to transmit both types of itch via its receptor NPRA encoded by Npr1. However, BNP also binds to its cognate receptor, NPRC encoded by Npr3 with equal potency. Moreover, natriuretic peptides (NP) signal through the Gi-couped inhibitory cGMP pathway that is supposed to inhibit neuronal activity, raising the question of how BNP may transmit itch information. Here we report that Npr3 expression in laminae I-II of the dorsal horn partially overlaps with NMB receptor (NMBR) that transmits histaminergic itch via Gq-couped PLCb-Ca2+ signaling pathway. Functional studies indicate that NPRC is required for itch evoked by histamine but not chloroquine (CQ), a nonhistaminergic pruritogen. Importantly, BNP significantly facilitates scratching behaviors mediated by NMB, but not GRP. Consistently, BNP evoked Ca2+ responses in NMBR/NPRC HEK 293 cells and NMBR/NPRC dorsal horn neurons. These results reveal a previously unknown mechanism by which BNP facilitates NMB-encoded itch through a novel NPRC-NMBR cross-signaling in mice. Our studies uncover distinct modes of action for neuropeptides in transmission and modulation of itch in mice.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6106
Author(s):  
Kerstin Michalski ◽  
Lars Kemna ◽  
Jasmin Asberger ◽  
Anca L. Grosu ◽  
Philipp T. Meyer ◽  
...  

Background: Positron emission tomography (PET)/computed tomography (CT) using the gastrin-releasing peptide receptor antagonist [68Ga]RM2 has shown to be a promising imaging method for primary breast cancer (BC) with positive estrogen receptor (ER) status. This study assessed tumor visualization by [68Ga]RM2 PET/CT in patients with pre-treated ER-positive BC and suspected metastases. Methods: This retrospective pilot study included eight female patients with initial ER-positive, pre-treated BC who underwent [68Ga]RM2 PET/CT. Most of these patients (seven out of eight; 88%) were still being treated with or had received endocrine therapy. [68Ga]RM2 PET/CTs were visually analyzed by two nuclear medicine specialists in consensus. Tumor manifestations were rated qualitatively (i.e., RM2-positive or RM2-negative) and quantitatively using the maximum standardized uptake value (SUVmax). SUVmax values were compared between the two subgroups (RM2-positive vs. RM2-negative). Results: Strong RM2 binding was found in all metastatic lesions of six patients (75%), whereas tracer uptake in all metastases of two patients (25%) was rated negative. Mean SUVmax of RM2-positive metastases with the highest SUVmax per patient (in lymph node and bone metastases; 15.8 ± 15.1 range: 3.7–47.8) was higher than mean SUVmax of the RM2-negative metastases with the highest SUVmax per patient (in bone metastases; 1.6 ± 0.1, range 1.5–1.7). Conclusions: Our data suggest that RM2 binding is maintained in the majority of patients with advanced disease stage of pre-treated ER-positive BC. Thus, [68Ga]RM2 PET/CT could support treatment decision in these patients, radiotherapy planning in oligometastatic patients or selection of patients for RM2 radioligand therapy. Further studies with larger patient cohorts are warranted to confirm these findings.


2021 ◽  
Vol 118 (48) ◽  
pp. e2108776118
Author(s):  
Nina Romantini ◽  
Shahidul Alam ◽  
Stefanie Dobitz ◽  
Martin Spillmann ◽  
Martina De Foresta ◽  
...  

G protein–coupled receptors (GPCRs) are one of the most important drug–target classes in pharmaceutical industry. Their diversity in signaling, which can be modulated with drugs, permits the design of more effective and better-tolerated therapeutics. In this work, we have used rigid oligoproline backbones to generate bivalent ligands for the gastrin-releasing peptide receptor (GRPR) with a fixed distance between their recognition motifs. This allows the stabilization of GPCR dimers irrespective of their physiological occurrence and relevance, thus expanding the space for medicinal chemistry. Specifically, we observed that compounds presenting agonists or antagonists at 20- and 30-Å distance induce GRPR dimerization. Furthermore, we found that 1) compounds with two agonists at 20- and 30-Å distance that induce dimer formation show bias toward Gq efficacy, 2) dimers with 20- and 30-Å distance have different potencies toward β-arrestin-1 and β-arrestin-2, and 3) the divalent agonistic ligand with 10-Å distance specifically reduces Gq potency without affecting β-arrestin recruitment, pointing toward an allosteric effect. In summary, we show that rigid oligoproline backbones represent a tool to develop ligands with biased GPCR signaling.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5093
Author(s):  
Berthold A. Nock ◽  
Aikaterini Kaloudi ◽  
Panagiotis Kanellopoulos ◽  
Barbara Janota ◽  
Barbara Bromińska ◽  
...  

Diagnostic imaging and radionuclide therapy of prostate (PC) and breast cancer (BC) using radiolabeled gastrin-releasing peptide receptor (GRPR)-antagonists represents a promising approach. We herein propose the GRPR-antagonist based radiotracer [99mTc]Tc-DB15 ([99mTc]Tc-N4-AMA-DGA-DPhe6,Sar11,LeuNHEt13]BBN(6-13); N4: 6-carboxy-1,4,8,11-tetraazaundecane, AMA: aminomethyl-aniline, DGA: diglycolic acid) as a new diagnostic tool for GRPR-positive tumors applying SPECT/CT. The uptake of [99mTc]Tc-DB15 was tested in vitro in mammary (T-47D) and prostate cancer (PC-3) cells and in vivo in T-47D or PC-3 xenograft-bearing mice as well as in BC patients. DB15 showed high GRPR-affinity (IC50 = 0.37 ± 0.03 nM) and [99mTc]Tc-DB15 strongly bound to the cell-membrane of T-47D and PC-3 cells, according to a radiolabeled antagonist profile. In mice, the radiotracer showed high and prolonged GRPR-specific uptake in PC-3 (e.g., 25.56 ± 2.78 %IA/g vs. 0.72 ± 0.12 %IA/g in block; 4 h pi) and T-47D (e.g., 15.82 ± 3.20 %IA/g vs. 3.82 ± 0.30 %IA/g in block; 4 h pi) tumors, while rapidly clearing from background. In patients with advanced BC, the tracer could reveal several bone and soft tissue metastases on SPECT/CT. The attractive pharmacokinetic profile of [99mTc]DB15 in mice and its capability to target GRPR-positive BC lesions in patients highlight its prospects for a broader clinical use, an option currently being explored by ongoing clinical studies.


2021 ◽  
Vol 22 (19) ◽  
pp. 10362
Author(s):  
Takumi Oti ◽  
Ryota Ueda ◽  
Ryoko Kumagai ◽  
Junta Nagafuchi ◽  
Takashi Ito ◽  
...  

Male sexual function in mammals is controlled by the brain neural circuits and the spinal cord centers located in the lamina X of the lumbar spinal cord (L3–L4). Recently, we reported that hypothalamic oxytocin neurons project to the lumbar spinal cord to activate the neurons located in the dorsal lamina X of the lumbar spinal cord (dXL) via oxytocin receptors, thereby facilitating male sexual activity. Sexual experiences can influence male sexual activity in rats. However, how this experience affects the brain–spinal cord neural circuits underlying male sexual activity remains unknown. Focusing on dXL neurons that are innervated by hypothalamic oxytocinergic neurons controlling male sexual function, we examined whether sexual experience affects such neural circuits. We found that >50% of dXL neurons were activated in the first ejaculation group and ~30% in the control and intromission groups in sexually naïve males. In contrast, in sexually experienced males, ~50% of dXL neurons were activated in both the intromission and ejaculation groups, compared to ~30% in the control group. Furthermore, sexual experience induced expressions of gastrin-releasing peptide and oxytocin receptors in the lumbar spinal cord. This is the first demonstration of the effects of sexual experience on molecular expressions in the neural circuits controlling male sexual activity in the spinal cord.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1160
Author(s):  
Adrien Chastel ◽  
Delphine Vimont ◽  
Stephane Claverol ◽  
Marion Zerna ◽  
Sacha Bodin ◽  
...  

Background: [68Ga]Ga-RM2 is a potent Gastrin-Releasing Peptide-receptor (GRP-R) antagonist for imaging prostate cancer and breast cancer, currently under clinical evaluation in several specialized centers around the world. Targeted radionuclide therapy of GRP-R-expressing tumors is also being investigated. We here report the characteristics of a kit-based formulation of RM2 that should ease the development of GRP-R imaging and make it available to more institutions and patients. Methods: Stability of the investigated kits over one year was determined using LC/MS/MS and UV-HPLC. Direct 68Ga-radiolabeling was optimized with respect to buffer (pH), temperature, reaction time and shaking time. Conventionally prepared [68Ga]Ga-RM2 using an automated synthesizer was used as a comparator. Finally, the [68Ga]Ga-RM2 product was assessed with regards to hydrophilicity, affinity, internalization, membrane bound fraction, calcium mobilization assay and efflux, which is a valuable addition to the in vivo literature. Results: The kit-based formulation, kept between 2 °C and 8 °C, was stable for over one year. Using acetate buffer pH 3.0 in 2.5–5.1 mL total volume, heating at 100 °C during 10 min and cooling down for 5 min, the [68Ga]Ga-RM2 produced by kit complies with the requirements of the European Pharmacopoeia. Compared with the module production route, the [68Ga]Ga-RM2 produced by kit was faster, displayed higher yields, higher volumetric activity and was devoid of ethanol. In in vitro evaluations, the [68Ga]Ga-RM2 displayed sub-nanomolar affinity (Kd = 0.25 ± 0.19 nM), receptor specific and time dependent membrane-bound fraction of 42.0 ± 5.1% at 60 min and GRP-R mediated internalization of 24.4 ± 4.3% at 30 min. The [natGa]Ga-RM2 was ineffective in stimulating intracellular calcium mobilization. Finally, the efflux of the internalized activity was 64.3 ± 6.5% at 5 min. Conclusion: The kit-based formulation of RM2 is suitable to disseminate GRP-R imaging and therapy to distant hospitals without complex radiochemistry equipment.


2021 ◽  
Vol 118 (31) ◽  
pp. e2103536118
Author(s):  
Keiko Takanami ◽  
Daisuke Uta ◽  
Ken Ichi Matsuda ◽  
Mitsuhiro Kawata ◽  
Earl Carstens ◽  
...  

There are sex differences in somatosensory sensitivity. Circulating estrogens appear to have a pronociceptive effect that explains why females are reported to be more sensitive to pain than males. Although itch symptoms develop during pregnancy in many women, the underlying mechanism of female-specific pruritus is unknown. Here, we demonstrate that estradiol, but not progesterone, enhances histamine-evoked scratching behavior indicative of itch in female rats. Estradiol increased the expression of the spinal itch mediator, gastrin-releasing peptide (GRP), and increased the histamine-evoked activity of itch-processing neurons that express the GRP receptor (GRPR) in the spinal dorsal horn. The enhancement of itch behavior by estradiol was suppressed by intrathecal administration of a GRPR blocker. In vivo electrophysiological analysis showed that estradiol increased the histamine-evoked firing frequency and prolonged the response of spinal GRP-sensitive neurons in female rats. On the other hand, estradiol did not affect the threshold of noxious thermal pain and decreased touch sensitivity, indicating that estradiol separately affects itch, pain, and touch modalities. Thus, estrogens selectively enhance histamine-evoked itch in females via the spinal GRP/GRPR system. This may explain why itch sensation varies with estrogen levels and provides a basis for treating itch in females by targeting GRPR.


Sign in / Sign up

Export Citation Format

Share Document