scholarly journals Ubiquitous quantum scarring does not prevent ergodicity

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Saúl Pilatowsky-Cameo ◽  
David Villaseñor ◽  
Miguel A. Bastarrachea-Magnani ◽  
Sergio Lerma-Hernández ◽  
Lea F. Santos ◽  
...  

AbstractIn a classically chaotic system that is ergodic, any trajectory will be arbitrarily close to any point of the available phase space after a long time, filling it uniformly. Using Born’s rules to connect quantum states with probabilities, one might then expect that all quantum states in the chaotic regime should be uniformly distributed in phase space. This simplified picture was shaken by the discovery of quantum scarring, where some eigenstates are concentrated along unstable periodic orbits. Despite that, it is widely accepted that most eigenstates of chaotic models are indeed ergodic. Our results show instead that all eigenstates of the chaotic Dicke model are actually scarred. They also show that even the most random states of this interacting atom-photon system never occupy more than half of the available phase space. Quantum ergodicity is achievable only as an ensemble property, after temporal averages are performed.

2009 ◽  
Vol 14 (12) ◽  
pp. 4273-4279 ◽  
Author(s):  
Arūnas Tamaševičius ◽  
Elena Tamaševičiūtė ◽  
Tatjana Pyragienė ◽  
Gytis Mykolaitis ◽  
Skaidra Bumelienė

1999 ◽  
Vol 172 ◽  
pp. 195-209
Author(s):  
P. Cincotta ◽  
C. Simó

AbstractIn this paper we show that the Conditional Entropy of nearby orbits may be a useful tool to explore the phase space associated to a given Hamiltonian. The arc length parameter along the orbits, instead of the time, is used as a random variable to compute the entropy. In the first part of this work we summarise the main analytical results to support this tool while, in the second part, we present numerical evidence that this technique is able to localise (stable) periodic and quasiperiodic orbits, ‘aperiodic’ orbits (chaotic motion) and unstable periodic orbits (the ‘source’ of chaotic motion). Besides, we show that this technique provides a measure of chaos which is similar to that given by the largest Lyapunov Characteristic Number. It is important to remark that this method is very simple to compute and does not require long time integrations, just realistic physical times.


2018 ◽  
Vol 28 (13) ◽  
pp. 1830042 ◽  
Author(s):  
Matthaios Katsanikas ◽  
Stephen Wiggins

We study phase space transport in a 2D caldera potential energy surface (PES) using techniques from nonlinear dynamics. The caldera PES is characterized by a flat region or shallow minimum at its center surrounded by potential walls and multiple symmetry related index one saddle points that allow entrance and exit from this intermediate region. We have discovered four qualitatively distinct cases of the structure of the phase space that govern phase space transport. These cases are categorized according to the total energy and the stability of the periodic orbits associated with the family of the central minimum, the bifurcations of the same family, and the energetic accessibility of the index one saddles. In each case, we have computed the invariant manifolds of the unstable periodic orbits of the central region of the potential, and the invariant manifolds of the unstable periodic orbits of the families of periodic orbits associated with the index one saddles. The periodic orbits of the central region are, for the first case, the unstable periodic orbits with period 10 that are outside the stable region of the stable periodic orbits of the family of the central minimum. In addition, the periodic orbits of the central region are, for the second and third cases, the unstable periodic orbits of the family of the central minimum and for the fourth case the unstable periodic orbits with period 2 of a period-doubling bifurcation of the family of the central minimum. We have found that there are three distinct mechanisms determined by the invariant manifold structure of the unstable periodic orbits that govern the phase space transport. The first mechanism explains the nature of the entrance of the trajectories from the region of the low energy saddles into the caldera and how they may become trapped in the central region of the potential. The second mechanism describes the trapping of the trajectories that begin from the central region of the caldera, their transport to the regions of the saddles, and the nature of their exit from the caldera. The third mechanism describes the phase space geometry responsible for the dynamical matching of trajectories originally proposed by Carpenter and described in [Collins et al., 2014] for the two-dimensional caldera PES that we consider.


1999 ◽  
Vol 38 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Yang Genke ◽  
Wei Shuzhi ◽  
Wei Junhu ◽  
Zeng Jianchao ◽  
Wu Zhiming ◽  
...  

1993 ◽  
Vol 48 (12) ◽  
pp. 1166-1172
Author(s):  
Paul Jenkins ◽  
Mark V. Daly ◽  
Daniel M. Heffernan

Abstract We study in detail the evolution of fractal structure within a two dimensional hyperbolic baker's map with a complete set of unstable orbits. The evolution of fractal structure within the phase space of the map is related to changes in an associated Cantor set, and this evolution is studied via their corresponding /(a) spectra. Numerical calculations of unstable periodic orbits for a related baker's map, with an incomplete set of unstable orbits, is investigated and directly related to, and characterized by, a pruned Cantor set. The effect of the pruning on the associated /(a) spectrum of the baker's map is analyzed.


2010 ◽  
Vol 20 (07) ◽  
pp. 2005-2043 ◽  
Author(s):  
G. CONTOPOULOS ◽  
M. HARSOULA

Stickiness refers to chaotic orbits that stay in a particular region for a long time before escaping. For example, stickiness appears near the borders of an island of stability in the phase space of a 2-D dynamical system. This is pronounced when the KAM tori surrounding the island are destroyed and become cantori (see [Contopoulos, 2002]). We find the time scale of stickiness along the unstable asymptotic curves of unstable periodic orbits around an island of stability, that depends on several factors: (a) the largest eigenvalue |λ| of the asymptotic curve. If λ > 0 the orbits on the unstable asymptotic manifold in one direction (fast direction) escape faster than the orbits in the opposite direction (slow direction) (b) the distance from the last KAM curve or from the main cantorus (the cantorus with the smallest gaps) (c) the size of the gaps of the main cantorus and (d) the other cantori, islands and asymptotic curves. The most important factor is the size of the gaps of the main cantorus. Then we find when the various KAM curves are destroyed. The distance of the last KAM curve from the center of an island gives the size of the island. When the central periodic orbit becomes unstable, chaos is also formed around it, limited by a first KAM curve. Between the first and the last KAM curves there are still closed invariant curves. The sizes of the islands as functions of the perturbation, have abrupt changes at resonances. These functions have some universal features but also some differences. A new type of stickiness appears near the unstable asymptotic curves of unstable periodic orbits that extend far into the large chaotic sea. Such a stickiness lasts for long times, increasing the density of points close to the unstable asymptotic curves. However after a much longer time, the density becomes almost equal everywhere outside the islands of stability. We consider also stickiness near the asymptotic curves from new periodic orbits, and stickiness in Anosov systems and near totally unstable orbits. In systems that allow escapes to infinity the stickiness delays the escapes. An important astrophysical application is the case of barred-spiral galaxies. The spiral arms outside corotation consist mainly of sticky chaotic orbits. Stickiness keeps the spiral forms for times longer than a Hubble time, but after a much longer time most of the chaotic orbits escape to infinity.


Sign in / Sign up

Export Citation Format

Share Document