scholarly journals A full gap above the Fermi level: the charge density wave of monolayer VS2

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Camiel van Efferen ◽  
Jan Berges ◽  
Joshua Hall ◽  
Erik van Loon ◽  
Stefan Kraus ◽  
...  

AbstractIn the standard model of charge density wave (CDW) transitions, the displacement along a single phonon mode lowers the total electronic energy by creating a gap at the Fermi level, making the CDW a metal–insulator transition. Here, using scanning tunneling microscopy and spectroscopy and ab initio calculations, we show that VS2 realizes a CDW which stands out of this standard model. There is a full CDW gap residing in the unoccupied states of monolayer VS2. At the Fermi level, the CDW induces a topological metal-metal (Lifshitz) transition. Non-linear coupling of transverse and longitudinal phonons is essential for the formation of the CDW and the full gap above the Fermi level. Additionally, x-ray magnetic circular dichroism reveals the absence of net magnetization in this phase, pointing to coexisting charge and spin density waves in the ground state.

Sign in / Sign up

Export Citation Format

Share Document