scholarly journals Population-based estimates of breast cancer risk for carriers of pathogenic variants identified by gene-panel testing

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Melissa C. Southey ◽  
James G. Dowty ◽  
Moeen Riaz ◽  
Jason A. Steen ◽  
Anne-Laure Renault ◽  
...  

AbstractPopulation-based estimates of breast cancer risk for carriers of pathogenic variants identified by gene-panel testing are urgently required. Most prior research has been based on women selected for high-risk features and more data is needed to make inference about breast cancer risk for women unselected for family history, an important consideration of population screening. We tested 1464 women diagnosed with breast cancer and 862 age-matched controls participating in the Australian Breast Cancer Family Study (ABCFS), and 6549 healthy, older Australian women enroled in the ASPirin in Reducing Events in the Elderly (ASPREE) study for rare germline variants using a 24-gene-panel. Odds ratios (ORs) were estimated using unconditional logistic regression adjusted for age and other potential confounders. We identified pathogenic variants in 11.1% of the ABCFS cases, 3.7% of the ABCFS controls and 2.2% of the ASPREE (control) participants. The estimated breast cancer OR [95% confidence interval] was 5.3 [2.1–16.2] for BRCA1, 4.0 [1.9–9.1] for BRCA2, 3.4 [1.4–8.4] for ATM and 4.3 [1.0–17.0] for PALB2. Our findings provide a population-based perspective to gene-panel testing for breast cancer predisposition and opportunities to improve predictors for identifying women who carry pathogenic variants in breast cancer predisposition genes.

Author(s):  
Siddhartha Yadav ◽  
Chunling Hu ◽  
Katherine L. Nathanson ◽  
Jeffrey N. Weitzel ◽  
David E. Goldgar ◽  
...  

PURPOSE To determine the contribution of germline pathogenic variants (PVs) in hereditary cancer testing panel genes to invasive lobular carcinoma (ILC) of the breast. MATERIALS AND METHODS The study included 2,999 women with ILC from a population-based cohort and 3,796 women with ILC undergoing clinical multigene panel testing (clinical cohort). Frequencies of germline PVs in breast cancer predisposition genes ( ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, PALB2, PTEN, RAD51C, RAD51D, and TP53) were compared between women with ILC and unaffected female controls and between women with ILC and infiltrating ductal carcinoma (IDC). RESULTS The frequency of PVs in breast cancer predisposition genes among women with ILC was 6.5% in the clinical cohort and 5.2% in the population-based cohort. In case-control analysis, CDH1 and BRCA2 PVs were associated with high risks of ILC (odds ratio [OR] > 4) and CHEK2, ATM, and PALB2 PVs were associated with moderate (OR = 2-4) risks. BRCA1 PVs and CHEK2 p.Ile157Thr were not associated with clinically relevant risks (OR < 2) of ILC. Compared with IDC, CDH1 PVs were > 10-fold enriched, whereas PVs in BRCA1 were substantially reduced in ILC. CONCLUSION The study establishes that PVs in ATM, BRCA2, CDH1, CHEK2, and PALB2 are associated with an increased risk of ILC, whereas BRCA1 PVs are not. The similar overall PV frequencies for ILC and IDC suggest that cancer histology should not influence the decision to proceed with genetic testing. Similar to IDC, multigene panel testing may be appropriate for women with ILC, but CDH1 should be specifically discussed because of low prevalence and gastric cancer risk.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 10581-10581
Author(s):  
Siddhartha Yadav ◽  
Chunling Hu ◽  
Susan M. Domchek ◽  
Jeffrey N. Weitzel ◽  
David Goldgar ◽  
...  

10581 Background: The prevalence of germline pathogenic variants (PVs) in cancer predisposition genes among women with invasive lobular breast cancer (ILC) and the risk of ILC in PV carriers is not well-defined. Methods: The study included 2,999 women with ILC and 32,544 unaffected controls from a population-based cohort; 3,796 women with ILC and 20,323 women with invasive ductal carcinoma (IDC) undergoing clinical multigene panel testing (clinical cohort); and 125,748 exome sequences from unrelated women without a cancer diagnosis in the gnomAD 3.0 dataset. Frequencies of germline PVs in breast cancer predisposition genes ( ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, PALB2, PTEN, RAD51C, RAD51D, and TP53) were compared between women with ILC and unaffected controls in both cohorts and between women with ILC and IDC in the clinical cohort. Results: The frequency of PVs in breast cancer predisposition genes among women with ILC was 6.5% in the clinical cohort and 5.2% in the population-based cohort. In case-control analyses, CDH1 and BRCA2 PVs were associated with high risks of ILC (Odds ratio (OR) > 4), and CHEK2, ATM and PALB2 PVs were associated with moderate (OR = 2-4) risks. BRCA1 PVs and CHEK2 p.Ile157Thr were not associated with clinically relevant risks (OR < 2) of ILC. PV frequencies in these genes in ILC and IDC were similar except for PV frequencies in BRCA1 and CDH1. Conclusions: The study establishes that PVs in ATM, BRCA2, CDH1, CHEK2 and PALB2 are associated with an increased risk of ILC, whereas BRCA1 PVs are not. The similar overall PV frequencies for ILC and IDC suggest that cancer histology should not influence the decision to proceed with genetic testing. While, multigene panel testing may be appropriate for women with ILC, CDH1 should be specifically discussed in the context of low prevalence and attendant gastric cancer risk.


Impact ◽  
2020 ◽  
Vol 2020 (7) ◽  
pp. 12-15
Author(s):  
Peter Devilee ◽  
Marjanka Schmidt

"Breast cancer affects more than 360,000 women per year in the EU and causes more than 90,000 deaths. Identification of women at high risk of the disease can lead to early detection or disease prevention through intensive screening, therapeutic and/or lifestyle preventive measures, or prophylactic surgery. Breast cancer risk is determined by a combination of genetic and lifestyle risk factors. The advent of next generation sequencing has opened the opportunity for testing in many disease genes, and diagnostic gene panel testing is being introduced in many EU countries. However, the cancer risks associated with most variants in most genes are unknown. This leads to a major problem in appropriate counselling and management of women undergoing panel testing. The BRIDGES and B-CAST projects are jointly building a knowledge base that will allow identification of women at high-risk of specific subtypes of breast cancer, through comprehensive evaluation of DNA variants in known and suspected breast cancer genes. The effort exploits the huge resources established through the Breast Cancer Association Consortium (BCAC) and ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles). Existing datasets will be expanded by sequencing all known breast cancer susceptibility genes in >100,000 breast cancer cases and controls from population-based studies. Risk factor and tumour genome data have been collected for 10,000 cases. Jointly, the data will allow us to generate a comprehensive risk model with unprecedented discriminative power, that can provide personalised risk estimates. We will develop online tools to aid the interpretation of gene variants and provide risk estimates in a user-friendly format, to help genetic counsellors and patients worldwide to make informed clinical decisions for risk management. We will evaluate the acceptability and utility of comprehensive gene panel testing in the clinical genetics context."


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 1514-1514 ◽  
Author(s):  
Siddhartha Yadav ◽  
Holly LaDuca ◽  
Eric Polley ◽  
Hermela Shimelis ◽  
Nancy Niguidula ◽  
...  

1514 Background: The prevalence of germline mutations in non-white patients with breast cancer and the germline genetic drivers of breast cancer risk in non-white populations are largely unknown. Methods: The study population included 77,900 women with breast cancer (Non-Hispanic white: 57,003; Black: 6,722; Asian: 4,183; Hispanic: 5,194; Ashkenazi-Jewish: 4,798) who underwent germline multigene panel testing of cancer predisposition genes from March 2012 to December 2016. The prevalence of predisposition gene mutations in racial and ethnic populations relative to non-Hispanic Whites was assessed while accounting for age at diagnosis of breast cancer, family history of breast and ovarian cancer, and estrogen receptor status of breast tumors. Associations between mutations in each gene and breast cancer risk were evaluated using reference controls. Results: The overall frequency of pathogenic mutations in known breast cancer predisposition genes was 9.1% for non-Hispanic Whites, 9.8% for African Americans, 10.2% for Hispanics, 7.6% for Ashkenazi-Jewish, and 7.5% for Asians. BRCA1 mutations were enriched (p < 0.05) and CHEK2 mutations were under-represented in all racial and ethnic populations relative to non-Hispanic Whites. BRCA2 and BARD1 mutations were enriched in African Americans and Hispanics relative to non-Hispanic Whites, whereas PALB2 and RAD51C mutations were enriched in Hispanics. Among genes with mutation counts large enough for assessment, mutations in BARD1, BRCA1, BRCA2, PALB2 and TP53 were significantly associated with clinically relevant increased risks (odds ratio (OR) > 2) of breast cancer across all ethnicities and races. Rates of variants of uncertain significance were highest among Asians (29%), followed by blacks (27%), Hispanics (21%), non-Hispanic whites (16%) and Ashkenazi-Jews (14%). Conclusions: While there is some similarity across ethnic groups, substantial heterogeneity exists in the prevalence of mutations in breast cancer predisposition genes across major racial and ethnic groups in the US population. These findings contribute to our understanding of breast cancer risk and have significant implications for genetic testing, screening, and management of patients with an inherited predisposition to breast cancer, with a need for continued analysis with increased cohort size in ethnic minority groups.


2016 ◽  
Vol 53 (5) ◽  
pp. 298-309 ◽  
Author(s):  
Douglas F Easton ◽  
Fabienne Lesueur ◽  
Brennan Decker ◽  
Kyriaki Michailidou ◽  
Jun Li ◽  
...  

2021 ◽  
Author(s):  
Elke M. van Veen ◽  
D. Gareth Evans ◽  
Elaine F. Harkness ◽  
Helen J. Byers ◽  
Jamie M. Ellingford ◽  
...  

AbstractPurpose: Lobular breast cancer (LBC) accounts for ~ 15% of breast cancer. Here, we studied the frequency of pathogenic germline variants (PGVs) in an extended panel of genes in women affected with LBC. Methods: 302 women with LBC and 1567 without breast cancer were tested for BRCA1/2 PGVs. A subset of 134 LBC affected women who tested negative for BRCA1/2 PGVs underwent extended screening, including: ATM, CDH1, CHEK2, NBN, PALB2, PTEN, RAD50, RAD51D, and TP53.Results: 35 PGVs were identified in the group with LBC, of which 22 were in BRCA1/2. Ten actionable PGVs were identified in additional genes (ATM(4), CDH1(1), CHEK2(1), PALB2(2) and TP53(2)). Overall, PGVs in three genes conferred a significant increased risk for LBC. Odds ratios (ORs) were: BRCA1: OR = 13.17 (95%CI 2.83–66.38; P = 0.0017), BRCA2: OR = 10.33 (95%CI 4.58–23.95; P < 0.0001); and ATM: OR = 8.01 (95%CI 2.52–29.92; P = 0.0053). We did not detect an increased risk of LBC for PALB2, CDH1 or CHEK2. Conclusion: The overall PGV detection rate was 11.59%, with similar rates of BRCA1/2 (7.28%) PGVs as for other actionable PGVs (7.46%), indicating a benefit for extended panel genetic testing in LBC. We also report a previously unrecognised association of pathogenic variants in ATM with LBC.


2021 ◽  
Vol 32 ◽  
pp. S432-S433
Author(s):  
C. Filorizzo ◽  
D. Fanale ◽  
L. Incorvaia ◽  
N. Barraco ◽  
M. Bono ◽  
...  

2019 ◽  
Vol 57 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Florentia Fostira ◽  
Irene Kostantopoulou ◽  
Paraskevi Apostolou ◽  
Myrto S Papamentzelopoulou ◽  
Christos Papadimitriou ◽  
...  

BackgroundGene panel testing has become the norm for assessing breast cancer (BC) susceptibility, but actual cancer risks conferred by genes included in panels are not established. Contrarily, deciphering the missing hereditability on BC, through identification of novel candidates, remains a challenge. We aimed to investigate the mutation prevalence and spectra in a highly selected cohort of Greek patients with BC, questioning an extensive number of genes, implicated in cancer predisposition and DNA repair, while calculating gene-specific BC risks that can ultimately lead to important associations.MethodsTo further discern BC susceptibility, a comprehensive 94-cancer gene panel was implemented in a cohort of 1382 Greek patients with BC, highly selected for strong family history and/or very young age (<35 years) at diagnosis, followed by BC risk calculation, based on a case–control analysis.ResultsHerein, 31.5% of patients tested carried pathogenic variants (PVs) in 28 known, suspected or candidate BC predisposition genes. In total, 24.8% of the patients carried BRCA1/2 loss-of-function variants. An additional 6.7% carried PVs in additional genes, the vast majority of which can be offered meaningful clinical changes. Significant association to BC predisposition was observed for ATM, PALB2, TP53, RAD51C and CHEK2 PVs. Primarily, compared with controls, RAD51C PVs and CHEK2 damaging missense variants were associated with high (ORs 6.19 (Exome Aggregation Consortium (ExAC)) and 12.6 (Fabulous Ladies Over Seventy (FLOSSIES)), p<0.01) and moderate BC risk (ORs 3.79 (ExAC) and 5.9 (FLOSSIES), p<0.01), respectively.ConclusionStudying a large and unique cohort of highly selected patients with BC, deriving from a population with founder effects, provides important insight on distinct associations, pivotal for patient management.


Sign in / Sign up

Export Citation Format

Share Document