scholarly journals Stretchable transparent electrodes for conformable wearable organic photovoltaic devices

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Nan Cui ◽  
Yu Song ◽  
Ching-Hong Tan ◽  
Kai Zhang ◽  
Xiye Yang ◽  
...  

AbstractTo achieve adhesive and conformable wearable electronics, improving stretchable transparent electrode (STE) becomes an indispensable bottleneck needed to be addressed. Here, we adopt a nonuniform Young’s modulus structure with silver nanowire (AgNW) and fabricate a STE layer. This layer possesses transparency of >88% over a wide spectrum range of 400–1000 nm, sheet resistance below 20 Ω sq−1, stretchability of up to 100%, enhanced mechanical robustness, low surface roughness, and good interfacial wettability for solution process. As a result of all these properties, the STE enables the fabrication of a highly efficient ultraflexible wearable device comprising of both organic photovoltaic (OPV) and organic photodetector (OPD) parts with high mechanical durability and conformability, for energy-harvesting and biomedical-sensing applications, respectively. This demonstrates the great potential of the integration of OPVs and OPDs, capable of harvesting energy independently for biomedical applications, paving the way to a future of independent conformable wearable OPV/OPDs for different applications.

2015 ◽  
Vol 106 (9) ◽  
pp. 093302 ◽  
Author(s):  
Hui Lu ◽  
Jian Lin ◽  
Na Wu ◽  
Shuhong Nie ◽  
Qun Luo ◽  
...  

2011 ◽  
Vol 520 (4) ◽  
pp. 1238-1241 ◽  
Author(s):  
E. Kymakis ◽  
E. Stratakis ◽  
M.M. Stylianakis ◽  
E. Koudoumas ◽  
C. Fotakis

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 566 ◽  
Author(s):  
M. Akhtar ◽  
Ahmad Umar ◽  
Swati Sood ◽  
InSung Jung ◽  
H. Hegazy ◽  
...  

This paper reports the rapid synthesis, characterization, and photovoltaic and sensing applications of TiO2 nanoflowers prepared by a facile low-temperature solution process. The morphological characterizations clearly reveal the high-density growth of a three-dimensional flower-shaped structure composed of small petal-like rods. The detailed properties confirmed that the synthesized nanoflowers exhibited high crystallinity with anatase phase and possessed an energy bandgap of 3.2 eV. The synthesized TiO2 nanoflowers were utilized as photo-anode and electron-mediating materials to fabricate dye-sensitized solar cell (DSSC) and liquid nitroaniline sensor applications. The fabricated DSSC demonstrated a moderate conversion efficiency of ~3.64% with a maximum incident photon to current efficiency (IPCE) of ~41% at 540 nm. The fabricated liquid nitroaniline sensor demonstrated a good sensitivity of ~268.9 μA mM−1 cm−2 with a low detection limit of 1.05 mM in a short response time of 10 s.


2021 ◽  
pp. 2100342
Author(s):  
Gabriel Bernardo ◽  
Tânia Lopes ◽  
David G. Lidzey ◽  
Adélio Mendes

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Heng Zhang ◽  
Dan Liu ◽  
Jeng-Hun Lee ◽  
Haomin Chen ◽  
Eunyoung Kim ◽  
...  

AbstractFlexible multidirectional strain sensors are crucial to accurately determining the complex strain states involved in emerging sensing applications. Although considerable efforts have been made to construct anisotropic structures for improved selective sensing capabilities, existing anisotropic sensors suffer from a trade-off between high sensitivity and high stretchability with acceptable linearity. Here, an ultrasensitive, highly selective multidirectional sensor is developed by rational design of functionally different anisotropic layers. The bilayer sensor consists of an aligned carbon nanotube (CNT) array assembled on top of a periodically wrinkled and cracked CNT–graphene oxide film. The transversely aligned CNT layer bridge the underlying longitudinal microcracks to effectively discourage their propagation even when highly stretched, leading to superior sensitivity with a gauge factor of 287.6 across a broad linear working range of up to 100% strain. The wrinkles generated through a pre-straining/releasing routine in the direction transverse to CNT alignment is responsible for exceptional selectivity of 6.3, to the benefit of accurate detection of loading directions by the multidirectional sensor. This work proposes a unique approach to leveraging the inherent merits of two cross-influential anisotropic structures to resolve the trade-off among sensitivity, selectivity, and stretchability, demonstrating promising applications in full-range, multi-axis human motion detection for wearable electronics and smart robotics.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
So Yeong Jeong ◽  
Hye Rin Shim ◽  
Yunha Na ◽  
Ki Suk Kang ◽  
Yongmin Jeon ◽  
...  

AbstractWearable electronic devices are being developed because of their wide potential applications and user convenience. Among them, wearable organic light emitting diodes (OLEDs) play an important role in visualizing the data signal processed in wearable electronics to humans. In this study, textile-based OLEDs were fabricated and their practical utility was demonstrated. The textile-based OLEDs exhibited a stable operating lifetime under ambient conditions, enough mechanical durability to endure the deformation by the movement of humans, and washability for maintaining its optoelectronic properties even in water condition such as rain, sweat, or washing. In this study, the main technology used to realize this textile-based OLED was multi-functional near-room-temperature encapsulation. The outstanding impermeability of TiO2 film deposited at near-room-temperature was demonstrated. The internal residual stress in the encapsulation layer was controlled, and the device was capped by highly cross-linked hydrophobic polymer film, providing a highly impermeable, mechanically flexible, and waterproof encapsulation.


Sign in / Sign up

Export Citation Format

Share Document