stable operating
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 54)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
pp. 1-21
Author(s):  
Jack Hutchings ◽  
Cesare A. Hall

Abstract Previous research into axial compressor stall has mainly focused on stall inception and methods to extend the stable operating range. This paper considers the performance of an axial compressor beyond stall and investigates how the characteristics of stall cells depend on Reynolds number. An experimental study has been conducted using a single-stage axial compressor capable of operating across the Reynolds number range of 10,000 – 100,000. Detailed unsteady measurements have been used to measure the behaviour across a range of in-stall flow coefficients. These measurements have been used to extract the stall hysteresis and to determine the size, speed, number, and spanwise extent of the stall cells. The results show that for the stalled compressor, as Reynolds number increases, the size of the minimum stable stall cell decreases. This means that a larger change in throttle area is needed to reduce the stall cell down to a size where the compressor can recover from stall. At the design Reynolds number, the number of stall cells that form transitions from one, to two, and then to four stall cells as the flow coefficient is reduced. At lower Reynolds numbers, the two-stall-cell state becomes unstable; instead, a single stall cell transitions directly into five stall cells. As the number of stall cells increases, so do the speed of the stall cells and the total size. Further reductions in the flow coefficient cause an increase in the total size and a decrease in the stall cell speed.


Author(s):  
Zitian Niu ◽  
Zhenzhong Sun ◽  
Baotong Wang ◽  
Xinqian Zheng

Abstract Rotating stall is an important unstable flow phenomenon that leads to performance degradation and limits the stability boundary in centrifugal compressors. The volute is one of the sources inducing non-axisymmetric flows in centrifugal compressors, which has an important effect on compressors' aerodynamic performance. However, the influence of volute on rotating stall is unclear. Therefore, the effects of volute on rotating stall behavior have been explored in this paper by experiments and numerical simulations. The frequency of the rotating stall captured by the experiments is 43.9% of the impeller passing frequency, while it is 44.7% of IPF calculated from the numerical results, which proves the accuracy and capability of the numerical method in this work to study the rotating stall behavior. The flow fields from CFD simulations further reveal that one stall cell initializing in a particular location deforms into several stall cells while rotating along the circumferential direction and becomes much smaller in a specific location during the evolution process, and finally, it is suppressed in another specific location as a result of the distorted flow field caused by the volute. By optimizing volute geometry to reduce the distortion of the flow field, it is expected that the rotating stall can be weakened or suppressed, which is helpful to extend the stable operating range of centrifugal compressors.


2022 ◽  
Vol 960 (1) ◽  
pp. 012013
Author(s):  
A Danlos ◽  
P Podevin ◽  
M Deligant ◽  
A Clenci ◽  
P Punov ◽  
...  

Abstract Surge is an unstable phenomenon appearing when a valve closing reduces the compressor flow rate. This phenomenon is avoided for automotive turbochargers by defining a surge margin during powertrain system design. This surge margin established with measurements in steady state testing regime limits the maximal engine torque at low levels of output. An active control of the compressor could reduce the surge margin and facilitate a transient compressor operation for a short time in surge zone. In this paper, an experimental study of the transient operation of a turbocharger compressor entering the surge zone is performed. Control of the turbocharger speed is sought to avoid unsteady operation using the variable geometry turbine (VGT) nozzle actuator. From a given stable operating point, surge is induced by reducing the opening of a valve located downstream of the compressor air circuit. The effect of reducing the speed of rotation by controlling the VGT valve is investigated, as this should lead to more stable compressor operation. The rotation speed of the turbocharger is controlled to avoid an unstable operating point using servo-actuator of variable geometry turbine. From a stable operating point, the surge appearance is caused by closing a butterfly valve downstream the air circuit of the compressor. The effect on the compressor rotation speed when the opening of variable geometry turbocharger valve is modified is studied. Measurements have been conducted for different control profiles of the VGT valve placed downstream the compressor. This article presents the means used to carry out these tests as well as the results of the measurements of the instantaneous signals of pressure, temperature, flow rate and rotation speed, allowing the analysis of the surge phenomenon.


2021 ◽  
pp. 1-22
Author(s):  
Wei Wang ◽  
Liu Boxing ◽  
Lu Jinling ◽  
Jianjun Feng ◽  
Wuli Chu ◽  
...  

Abstract Discrete tip injection is an effective method to enhance stability of compressors. This study compares the effects of injection parameters on compressor performance and underlying mechanisms in two different compressors. The transonic compressor is studied using unsteady simulations and the subsonic compressor is mainly investigated with experiment. Results show that tip injection improves stable operating range by 35.6% and 77.9% for the transonic compressor and subsonic compressor, respectively, without decreasing compressor efficiency. The effects of circumferential coverage percentage and injector throat height on compressor stability are similar in the two compressors when the injection velocity is double the velocity of main flow. The optimal injector throat height which is normalized by the tip clearance size is the same for the two compressors, and the best circumferential coverage percentage for the subsonic compressor is lower than that in the transonic compressor. For the two compressors, the adaption of the main flow to the discrete tip injection is unsteady, and the hysteresis effect that the recovery of tip blockage lags behind the recovery of tip leakage vortex accounts for the improved stability using partial coverage of injection. The injection efficiency, which is defined to quantify the improved quality of the flow field in the injection domain, is proven to determine the stall limits by studying the effects of several injection parameters. The guidelines built in the subsonic compressor can be used in the transonic compressor to design tip injection, but the optimal values of some injection parameters should be reconfirmed.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8057
Author(s):  
Rong Xu ◽  
Jun Hu ◽  
Xuegao Wang ◽  
Chao Jiang ◽  
Jiajia Ji

In this paper, an experimental study was carried out on the rotating instability in an axial compressor subjected to inlet steady paired swirl distortion. In order to deepen the understanding of the rotating stall mechanism under inlet steady paired swirl distortion, the dynamic-wall static pressure near the rotor tip was monitored to characterize the flow in the rotor tip region at different circumferential stations. In the experiment, the dynamic characteristics of the rotor tip flow field at a stable operating point and during the process from the stable point to complete stall were measured. The results indicated that for the compressor with a 2 mm rotor tip clearance, the inlet paired swirl distortion induced rotating instability (RI) near the stall point, causing the compressor to enter stall in advance. Compared with the RI intensity of the clean inlet, the distortion with a swirling blade stagger angle (αst) of ±20° increased the RI intensity up to 69.8%, while for αst equal to ±40°, the RI intensity increased at most by 135.8%. As the rotor tip clearance increased to 3 mm, the co-rotating swirl in the paired swirl distortion inhibited the appearance of RI, while the counter-rotating part aggravated the development of RI. At the beginning, the process of the compressor rotating stall involved the alternation of short-scale disturbance and long-scale disturbance. The co-rotating swirl weakened the perturbation propagated from the counter-rotating swirl sector. Once the inhibition was no longer present, the short-scale disturbance rapidly developed into a long-scale disturbance and then entered the rotating stall.


Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 279
Author(s):  
Dominik Cikač ◽  
Nikola Turk ◽  
Neven Bulić ◽  
Stefano Barbanti

Flux estimation is a key feature of the field-oriented control for the electrically excited synchronous machine which enables the high-performance, high-dynamic drive behavior. In this work, an electrically excited synchronous machine flux estimator based on a current and voltage model is proposed. In this case, the transition between the estimators is done with a fuzzy logic set of rules. The flux estimator based on the current model of the machine in this paper considers the saturation and cross-coupling effect in both axis and it is suitable for applications where a limited amount of the machine data is available. The flux estimator based on the voltage model is specially designed for the drives where high voltage and current ripple is present under normal operating conditions, e.g., like in cycloconverter applications. To exploit all the advantages of both models, a fuzzy logic transition is proposed based on multiple choices which manages the transition between the models based on a speed and torque reference. The proposed flux estimator is experimentally verified on a cycloconverter fed salient-pole electrically excited synchronous machine. The experimental results clearly show that the proposed flux estimator enables the accurate and stable operating conditions for different operating points of the cycloconverter-fed salient-pole electrically excited synchronous machine.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jian Wang ◽  
Zuoxu Wu ◽  
Yijie Liu ◽  
Shuaihang Hou ◽  
Zhikun Ren ◽  
...  

Exploring the spectrally selective absorbers with high optical performance and excellent thermal stability is crucial to improve the conversion efficiency of solar energy to electricity in concentrated solar power (CSP) systems. However, there are limited reports on the selective solar absorbers utilized at 900oC or above. Herein, we developed a selective absorption coating based on the ultra-high temperature ceramic ZrC and the quasi-optical microcavity (QOM) optical structure, and experimentally achieved the absorber via depositing an all-ceramic multilayer films on a stainless steel substrate by magnetron sputtering. The prepared multi-layer selective absorber demonstrates an excellent high solar absorptance of ∼0.964 due to the multi absorptance mechanisms in the QOM, and a relatively low thermal emittance of ∼0.16 (82°C). Moreover, the coating can survive at 900oC in vacuum for 100 h with a superior spectral selectivity of 0.96/0.143 (82°C) upon annealing, resulting from the introduction of ultra-high temperature ceramic ZrC in the QOM structure. Under the conditions of a stable operating temperature of 900°C and a concentration ratio of 1,000 suns, the calculated ideal conversion efficiency using this absorber can reach around 68%, exceeding most solar selective absorbers in previous reports.


Author(s):  
Neetesh S Raghuvanshi ◽  
Goutam Dutta ◽  
Manoj K Panda

A numerical model for a supercritical natural circulation loop is developed to examine the flow instabilities by nonlinear stability analysis. The supercritical natural circulation loop is a loop geometry, which is driven by natural circulation with supercritical fluids as a coolant. A mathematical formulation is developed to study the steady-state and transient solution procedure for supercritical natural circulation loop. This mathematical model is then used to perform various parametric studies with different supercritical fluids (water, [Formula: see text], R134a, ammonia, R22, propane, and isobutane). The behavior of all the fluids is analyzed on identical geometrical and operating conditions. A comprehensive numerical study of the nonlinear stability analysis is presented with particular emphasis on the feasibility of various fluids in a natural circulation loop environment. The 50% increment in loop diameter and height increased the stable operating zones and shifted the marginal stability boundary upward respectively by approximately three times and 25–40% of the previous value. However, further increase in diameter and height reduces the increment of stable operating zones; hence the marginal stability boundary shifts upward marginally than the previous value. Furthermore, the marginal stability boundaries are generated to identify the stable and unstable zones for the available geometrical and operating conditions.


2021 ◽  
Author(s):  
Raghunathan Manikandan ◽  
Nitin Babu George ◽  
Vishnu Unni ◽  
R. Sujith ◽  
Jürgen Kurths ◽  
...  

Abstract Tackling the problem of emissions is at the forefront of scientific research today. While industrial engines designed to operate in stable regimes produce emissions, attempts to operate them at "greener" conditions often fail due to thermoacoustic instability. During thermoacoustic instability, hazardous high amplitude periodic oscillations lead to failure of these engines in power plants, aircrafts and rockets. Yet, identifying the onset of thermoacoustic instability remains elusive due to spatial variability and the continuous evolution of spatiotemporal patterns in the reacting flow field. Here, we show experimental evidence of early manifestation of the onset of thermoacoustic instability at certain zones. Our findings allow us to identify a critical threshold that enables us to distinguish stable operating regimes from hazardous operations. This opens new perspectives for predicting the onset of thermoacoustic instability and could be a step forward to "greener" operations. The developed methodology is applicable for other systems exhibiting phase transitions.


Sign in / Sign up

Export Citation Format

Share Document