scholarly journals Hierarchical graphical model reveals HFR1 bridging circadian rhythm and flower development in Arabidopsis thaliana

Author(s):  
Zhana Duren ◽  
Yaling Wang ◽  
Jiguang Wang ◽  
Xing-Ming Zhao ◽  
Le Lv ◽  
...  
1992 ◽  
Vol 47 (11-12) ◽  
pp. 925-928 ◽  
Author(s):  
Wolfgang Engelmann ◽  
Karl Simon ◽  
Chen Jyh Phen

A circadian rhythm of leaf movements of Arabidopsis thaliana and its recording in continuous weak light with a video-computer system is described


Amino Acids ◽  
2011 ◽  
Vol 42 (2-3) ◽  
pp. 831-841 ◽  
Author(s):  
Paola Fincato ◽  
Panagiotis N. Moschou ◽  
Abdellah Ahou ◽  
Riccardo Angelini ◽  
Kalliopi A. Roubelakis-Angelakis ◽  
...  

Author(s):  
Claudio Brandoli ◽  
Cesar Petri ◽  
Marcos Egea-Cortines ◽  
Julia Weiss

GIGANTEA (GI) is a gene involved in multiple biological functions, which were analysed and are partially conserved in a series of mono- and dicotyledonous plant species. The identified biological functions include control over the circadian rhythm, light signalling, cold tolerance, hormone signalling and photoperiodic flowering. The latter function is a central role of GI, as it involves a multitude of pathways, both dependent and independent of the gene CONSTANS(CO) as well as on the basis of interaction with miRNA. The complexity of gene function of GI increases due to the existence of paralogs showing changes in genome structure as well as incidences of sub- and neofunctionalization. We present an updated report of the biological function of GI, integrating late insights into its role in floral initiation, flower development and flower volatile production.


Development ◽  
1993 ◽  
Vol 119 (3) ◽  
pp. 721-743 ◽  
Author(s):  
J. L. Bowman ◽  
J. Alvarez ◽  
D. Weigel ◽  
E. M. Meyerowitz ◽  
D. R. Smyth

Mutations in the APETALA1 gene disturb two phases of flower development, flower meristem specification and floral organ specification. These effects become manifest as a partial conversion of flowers into inflorescence shoots and a disruption of sepal and petal development. We describe the changes in an allelic series of nine apetala1 mutants and show that the two functions of APETALA1 are separable. We have also studied the interaction between APETALA1 and other floral genes by examining the phenotypes of multiply mutant plants and by in situ hybridization using probes for several floral control genes. The results suggest that the products of APETALA1 and another gene, LEAFY, are required to ensure that primordia arising on the flanks of the inflorescence apex adopt a floral fate, as opposed to becoming an inflorescence shoot. APETALA1 and LEAFY have distinct as well as overlapping functions and they appear to reinforce each other's action. CAULIFLOWER is a newly discovered gene which positively regulates both APETALA1 and LEAFY expression. All functions of CAULIFLOWER are redundant with those of APETALA1. APETALA2 also has an early function in reinforcing the action of APETALA1 and LEAFY, especially if the activity of either is compromised by mutation. After the identity of a flower primordium is specified, APETALA1 interacts with APETALA2 in controlling the development of the outer two whorls of floral organs.


2010 ◽  
Vol 56 (1) ◽  
pp. 39-47 ◽  
Author(s):  
XiaoLi Qi ◽  
Yao Jiang ◽  
Fang Tang ◽  
MinJie Wang ◽  
JianJun Hu ◽  
...  

Development ◽  
1988 ◽  
Vol 104 (2) ◽  
pp. 195-203 ◽  
Author(s):  
M.K. Komaki ◽  
K. Okada ◽  
E. Nishino ◽  
Y. Shimura

We have isolated a number of mutants of Arabidopsis thaliana, a member of the mustard family, that have defects in flower development and morphogenesis. Of these, five mutants have been extensively characterized. Two mutants (Fl-40, Fl- 48) lacking petals show homeotic conversion of sepals to carpels. One mutant (Fl-54) displays highly variable phenotypes, including several types of homeotic variations, loss or distorted positions of the floral organs as well as abnormal structures on the inflorescence. Two other mutants (Fl-82, Fl-89) show aberrant structures in the pistils. Genetic analyses have revealed that these mutations are single and recessive, except for one mutant whose mutational loci still remain to be determined. These mutants may prove useful for the analysis of the genetic control of flower development and morphogenesis in the higher plant.


Sign in / Sign up

Export Citation Format

Share Document