photoperiodic flowering
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 49)

H-INDEX

39
(FIVE YEARS 5)

2021 ◽  
Vol 23 (1) ◽  
pp. 63
Author(s):  
Junyan Xie ◽  
Lihua Wang ◽  
Huiqiong Zheng

Understanding the effects of spaceflight on plant flowering regulation is important to setup a life support system for long-term human space exploration. However, the way in which plant flowering is affected by spaceflight remains unclear. Here, we present results from our latest space experiments on the Chinese spacelab Tiangong-2, in which Arabidopsis wild-type and transgenic plants pFT::GFP germinated and grew as normally as their controls on the ground, but the floral initiation under the long-day condition in space was about 20 days later than their controls on the ground. Time-course series of digital images of pFT::GFP plants showed that the expression rhythm of FT in space did not change, but the peak appeared later in comparison with those of their controls on the ground. Whole-genome microarray analysis revealed that approximately 16% of Arabidopsis genes at the flowering stage changed their transcript levels under spaceflight conditions in comparison with their controls on the ground. The GO terms were enriched in DEGs with up-regulation of the response to temperature, wounding, and protein stabilization and down-regulation of the function in circadian rhythm, gibberellins, and mRNA processes. FT and SOC1 could act as hubs to integrate spaceflight stress signals into the photoperiodic flowering pathway in Arabidopsis in space.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hayato Yoshioka ◽  
Keiko Kimura ◽  
Yuko Ogo ◽  
Namie Ohtsuki ◽  
Ayako Nishizawa-Yokoi ◽  
...  

Flowering is an important biological process through which plants determine the timing of reproduction. In rice, florigen mRNA is induced more strongly when the day length is shorter than the critical day length through recognition of 30-min differences in the photoperiod. Grain number, plant height, and heading date 7 (Ghd7), which encodes a CCT-domain protein unique to monocots, has been identified as a key floral repressor in rice, and Heading date 1 (Hd1), a rice ortholog of the Arabidopsis floral activator CONSTANS (CO), is another key floral regulator gene. The Hd1 gene product has been shown to interact with the Ghd7 gene product to form a strong floral repressor complex under long-day conditions. However, the mRNA dynamics of these genes cannot explain the day-length responses of their downstream genes. Thus, a real-time monitoring system of these key gene products is needed to elucidate the molecular mechanisms underlying accurate photoperiod recognition in rice. Here, we developed a monitoring system using luciferase (LUC) fusion protein lines derived from the Ghd7-LUC and Hd1-LUC genes. We successfully obtained a functionally complemented gene-targeted line for Ghd7-LUC. Using this system, we found that the Ghd7-LUC protein begins to accumulate rapidly after dawn and reaches its peak more rapidly under a short-day condition than under a long-day condition. Our system provides a powerful tool for revealing the accurate time-keeping regulation system incorporating these key gene products involved in rice photoperiodic flowering.


aBIOTECH ◽  
2021 ◽  
Author(s):  
Pingxian Zhang ◽  
Xiulan Li ◽  
Yifan Wang ◽  
Weijun Guo ◽  
Sadaruddin Chachar ◽  
...  

AbstractThe timing of floral transition is critical for reproductive success in flowering plants. In long-day (LD) plant Arabidopsis, the floral regulator gene FLOWERING LOCUS T (FT) is a major component of the mobile florigen. FT expression is rhythmically activated by CONSTANS (CO), and specifically accumulated at dusk of LDs. However, the underlying mechanism of adequate regulation of FT transcription in response to day-length cues to warrant flowering time still remains to be investigated. Here, we identify a homolog of human protein arginine methyltransferases 6 (HsPRMT6) in Arabidopsis, and confirm AtPRMT6 physically interacts with three positive regulators of flowering Nuclear Factors YC3 (NF-YC3), NF-YC9, and NF-YB3. Further investigations find that AtPRMT6 and its encoding protein accumulate at dusk of LDs. PRMT6-mediated H3R2me2a modification enhances the promotion of NF-YCs on FT transcription in response to inductive LD signals. Moreover, AtPRMT6 and its homologues proteins AtPRMT4a and AtPRMT4b coordinately inhibit the expression of FLOWERING LOCUS C, a suppressor of FT. Taken together, our study reveals the role of arginine methylation in photoperiodic pathway and how the PRMT6-mediating H3R2me2a system interacts with NF-CO module to dynamically control FT expression and facilitate flowering time.


2021 ◽  
Vol 22 (23) ◽  
pp. 12929
Author(s):  
Xiao-Mei Wu ◽  
Zheng-Min Yang ◽  
Lin-Hao Yang ◽  
Ji-Ren Chen ◽  
Hai-Xia Chen ◽  
...  

The photoperiodic flowering pathway is essential for plant reproduction. As blue and ultraviolet-A light receptors, cryptochromes play an important role in the photoperiodic regulation of flowering. Lilium × formolongi is an important cut flower that flowers within a year after seed propagation. Floral induction is highly sensitive to photoperiod. In this study, we isolated the CRYPTOCHROME2 gene (LfCRY2) from L. × formolongi. The predicted LfCRY2 protein was highly homologous to other CRY2 proteins. The transcription of LfCRY2 was induced by blue light. LfCRY2 exhibits its highest diurnal expression during the floral induction stage under both long-day and short-day photoperiods. Overexpression of LfCRY2 in Arabidopsis thaliana promoted flowering under long days but not short days, and inhibited hypocotyl elongation under blue light. Furthermore, LfCRY2 was located in the nucleus and could interact with L. × formolongi CONSTANS-like 9 (LfCOL9) and A. thaliana CRY-interacting basic-helix-loop-helix 1 (AtCIB1) in both yeast and onion cells, which supports the hypothesis that LfCRY2 hastens the floral transition via the CIB1-CO pathway in a manner similar to AtCRY2. These results provide evidence that LfCRY2 plays a vital role in promoting flowering under long days in L. × formolongi.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoying Wang ◽  
Peng Zhou ◽  
Rongyu Huang ◽  
Jianfu Zhang ◽  
Xinhao Ouyang

The photoperiodic flowering pathway is crucial for plant development to synchronize internal signaling events and external seasons. One hundred years after photoperiodic flowering was discovered, the underlying core signaling network has been elucidated in model plants such as Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and soybean (Glycine max). Here, we review the progress made in the photoperiodic flowering area and summarize previously accepted photoperiodic flowering models. We then introduce a new model based on daylength recognition by florigen. By determining the expression levels of the florigen gene, this model can assess the mechanism of daylength sensing and crop latitude adaptation. Future applications of this model under the constraints of global climate change are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Peng ◽  
Win Tun ◽  
Shuang-feng Dai ◽  
Jia-yue Li ◽  
Qun-jie Zhang ◽  
...  

Photoperiod sensitivity is a dominant determinant for the phase transition in cereal crops. CCT (CONSTANS, CO-like, and TOC1) transcription factors (TFs) are involved in many physiological functions including the regulation of the photoperiodic flowering. However, the functional roles of CCT TFs have not been elucidated in the wild progenitors of crops. In this study, we identified 41 CCT TFs, including 19 CMF, 17 COL, and five PRR TFs in Oryza rufipogon, the presumed wild ancestor of Asian cultivated rice. There are thirty-eight orthologous CCT genes in Oryza sativa, of which ten pairs of duplicated CCT TFs are shared with O. rufipogon. We investigated daily expression patterns, showing that 36 OrCCT genes exhibited circadian rhythmic expression. A total of thirteen OrCCT genes were identified as putative flowering suppressors in O. rufipogon based on rhythmic and developmental expression patterns and transgenic phenotypes. We propose that OrCCT08, OrCCT24, and OrCCT26 are the strong functional alleles of rice DTH2, Ghd7, and OsPRR37, respectively. The SD treatment at 80 DAG stimulated flowering of the LD-grown O. rufipogon plants. Our results further showed that the nine OrCCT genes were significantly downregulated under the treatment. Our findings would provide valuable information for the construction of photoperiodic flowering regulatory network and functional characterization of the CCT TFs in both O. rufipogon and O. sativa.


Author(s):  
Soledad Perez Santangelo ◽  
Nathanael Napier ◽  
Fran Robson ◽  
James Weller ◽  
Donna Bond ◽  
...  

Plants use seasonal cues to initiate flowering at an appropriate time of year to ensure optimal reproductive success. The circadian clock integrates these daily and seasonal cues with internal cues to initiate flowering. The molecular pathways that control the sensitivity of flowering to photoperiod (daylength) are well described in the model plant Arabidopsis. However, much less is known in crop species, such as the legume family species. Here we performed a flowering time screen of a TILLING population of Medicago truncatula and found a line with late-flowering and altered light-sensing phenotypes. Using RNA-sequencing, we identified a nonsense mutation in the Phytochromobilin Synthase (MtPΦBS) gene, which encodes an enzyme that carries out the final step in the biosynthesis of the chromophore required for phytochrome (PHY) activity. The analysis of the circadian clock in the MtpΦbs mutant revealed a shorter circadian period, which was shared with the phyA mutant. The MtpΦbs and MtphyA mutants showed downregulation of FT floral regulators MtFTa1, MtFTb1/b2 and a shift in phase for morning and night core clock genes. Our findings show that PHYA is necessary to synchronize the circadian clock and integration of light signaling to promote expression of the MtFT genes to precisely time flowering.


Sign in / Sign up

Export Citation Format

Share Document