floral organs
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 52)

H-INDEX

34
(FIVE YEARS 3)

Author(s):  
Nguyen Thi Cam ◽  
Naomichi Sunagawa ◽  
Miho Sesumi ◽  
Yoshikuni Kitamura ◽  
Yoshiyuki Tanaka ◽  
...  

2021 ◽  
Author(s):  
Gang Zeng ◽  
Bing Liu ◽  
David K. Ferguson ◽  
Yong Yang
Keyword(s):  

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1162
Author(s):  
Lianping Sun ◽  
Jingxin Wang ◽  
Xiaoxia Wen ◽  
Zequn Peng ◽  
Daibo Chen ◽  
...  

The spikelet developmental processes that control structure and floral organ identity play critical roles in rice grain yield formation. In this study, we characterized a novel rice mutant, SLL1-ZH, which exhibits a variety of defective agronomic characters, including semi-dwarf, rolling leaf, deformed panicles, and reduced grains production. Morphological analysis also revealed that the SLL1-ZH mutant shows numerous defects of floral organs, such as cracked glumes, hooked and thin lemmas, shrunken but thickened paleas, an indeterminate number of stamens and stigmas, and heterotopic ovaries. Map-based cloning identified a single nucleotide substitution (C to G) in the first exon of LOC_Os09g23200 that is responsible for the SLL1-ZH phenotype. In addition, qPCR analysis showed a significant change in the relative expression of SLL1-ZH in the mutant during inflorescence differentiation and in the different floral organs. Transcription of rice floral organ development-related factors also changed significantly in the mutant. Therefore, our results suggested that SLL1-ZH plays a great role in plant growth, spikelet development, and grain yield in rice.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ting Zhou ◽  
Kun Ning ◽  
Wangxiang Zhang ◽  
Hong Chen ◽  
Xiaoqing Lu ◽  
...  

Abstract Background In angiosperms, phenotypic variation of floral organs is often considered as the traditional basis for the evolutionary relationship of different taxonomic groups above the species level. However, little is known about that at or below the species level. Here, we experimentally tested the phenotypic variation of Malus floral organs using combined methods of intraspecific uniformity test, interspecific distinctness analysis, principal component analysis, Pearson correlation analysis, and Q-type cluster analysis. The ancestor-inclined distribution characteristic analysis of Malus species and cultivars floral attributes was also carried out, so as to explore its taxonomic significance. Results 15/44 phenotypic traits (e.g., flower shape, flower type, flower diameter, ...) were highly consistent, distinguishable, and independent and could be used as the basis for Malus germplasm taxonomy. The studied 142 taxa were divided into two groups (A, B) and five sub-groups (A1, A2, B1, B2, B3), with significantly variable floral phenotypic attributes between groups and within sub-groups. Malus natural species were relatively clustered in the same section (series) while homologous cultivars showed evidence of ancestor-inclined distribution characteristics. However, no significant correlation between the evolutionary order of sections (Sect. Docyniopsis → Sect. Chloromeles → Sect. Sorbomalus → Sect. Eumalus) and group/sub-groups (B3 → B2 → B1 → A). Conclusions Phenotypic variation of floral organs could better explore the genetic relationship between Malus taxa. The findings improved our cognition of floral phenotypic variation taxonomic significance under the species level.


2021 ◽  
Author(s):  
Ya Min ◽  
Stephanie J. Conway ◽  
Elena M. Kramer

ABSTRACTIn-depth investigation of any developmental process in plants requires knowledge of both the underpinning molecular networks and how they directly determine patterns of cell division and expansion over time. Floral meristems (FM) produce floral organs, after which they undergo floral meristem termination (FMT), and precise control of organ initiation and FMT is crucial to reproductive success of any flowering plant. Using a live confocal imaging, we characterized developmental dynamics during floral organ primordia initiation and FMT in Aquilegia coerulea (Ranunculaceae). Our results have uncovered distinct patterns of primordium initiation between stamens and staminodes compared to carpels, and provided insight into the process of FMT, which is discernable based on cell division dynamics preceding carpel initiation. To our knowledge, this is the first quantitative live imaging of meristem development in a system with numerous whorls of floral organs as well as an apocarpous gynoecium. This study provides crucial information for our understanding of how the spatial-temporal regulation of floral meristem behavior is achieved in both an evolutionary and developmental context.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1994
Author(s):  
Elizabeth Ramage ◽  
Valerie L. Soza ◽  
Jing Yi ◽  
Haley Deal ◽  
Vaidehi Chudgar ◽  
...  

Bilaterally symmetric flowers have evolved over a hundred times in angiosperms, yet orthologs of the transcription factors CYCLOIDEA (CYC), RADIALIS (RAD), and DIVARICATA (DIV) are repeatedly implicated in floral symmetry changes. We examined these candidate genes to elucidate the genetic underpinnings of floral symmetry changes in florally diverse Rhododendron, reconstructing gene trees and comparing gene expression across floral organs in representative species with radial and bilateral flower symmetries. Radially symmetric R. taxifolium Merr. and bilaterally symmetric R. beyerinckianum Koord. had four and five CYC orthologs, respectively, from shared tandem duplications. CYC orthologs were expressed in the longer dorsal petals and stamens and highly expressed in R. beyerinckianum pistils, whereas they were either ubiquitously expressed, lost from the genome, or weakly expressed in R. taxifolium. Both species had two RAD and DIV orthologs uniformly expressed across all floral organs. Differences in gene structure and expression of Rhododendron RAD compared to other asterids suggest that these genes may not be regulated by CYC orthologs. Our evidence supports CYC orthologs as the primary regulators of differential organ growth in Rhododendron flowers, while also suggesting certain deviations from the typical asterid gene regulatory network for flower symmetry.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1881
Author(s):  
Vuong Quoc Nhat ◽  
Yusuke Kazama ◽  
Kotaro Ishii ◽  
Sumie Ohbu ◽  
Hisato Kunitake ◽  
...  

Two growth processes, cell proliferation and expansion, determine plant species-specific organ sizes. A large flower mutant in Arabidopsis thaliana, ohbana1 (ohb1), was isolated from a mutant library. In the ohb1 flowers, post-mitotic cell expansion and endoreduplication of nuclear DNA were promoted. The whole-genome resequencing and genetic analysis results showed that the loss of function in MEDIATOR16 (MED16), a mediator complex subunit, was responsible for the large flower phenotypes exhibited by ohb1. A phenotypic analysis of the mutant alleles in MED16 and the double mutants created by crossing ohb1 with representative large flower mutants revealed that MED16 and MED25 share part of the negative petal size regulatory pathways. Furthermore, the double mutant analyses suggested that there were genetically independent pathways leading to cell size restrictions in the floral organs which were not related to the MED complex. Several double mutants also formed larger and heavier seeds than the wild type and single mutant plants, which indicated that MED16 was involved in seed size regulation. This study has revealed part of the size-regulatory network in flowers and seeds through analysis of the ohb1 mutant, and that the size-regulation pathways are partially different between floral organs and seeds.


AoB Plants ◽  
2021 ◽  
Vol 13 (5) ◽  
Author(s):  
Gabriella da Silva Saab ◽  
Vidal de Freitas Mansano ◽  
Anselmo Nogueira ◽  
Isabele Carvalho Maia ◽  
Pedro Joaquim Bergamo ◽  
...  

Abstract Buzz-pollinated pollen flowers have pollen as the primary resource for pollinators and must deal with a conflict between the exploitation of pollen grains by bees and pollination success. It has been hypothesized that heterostemony allows division of labour between stamens as a solution to the pollen dilemma. To test the division of labour hypothesis, we chose Cassia fistula, which has a trimorphic androecium and analysed androecium development, pollen grain release mechanisms and visitor behaviour. We explored the reflectance of floral organs and carried out an exclusion experiment to test the attractiveness of each stamen morph to the bee species. Finally, we explored the structural, ultrastructural and functional variation between the pollen grains, including pollen viability across stamen morphs. The differences among the three stamen morphs, which is developed from two whorls of the stamen, are the first evidence of the division of labour in our study system. Large Bombus and Xylocopa bees actively and exclusively exploited the pollen grains from the central poricidal anthers generating pollen deposition on their bodies. The reflectance pattern of floral organs indicated a targeting of these large bees to the central anthers, corroborated by the anther manipulative experiment where only the exclusion of the anthers positioned in the flower centre, especially the intermediate stamens, reduced bee visits. Both results revealed a division of labour, in which the intermediate stamen morph was responsible for both floral attractiveness and pollen resources. Only the largest stamen morph produced germinable pollen grains, highlighting their role as pollinating stamens. The smallest stamen morph has a less clear function, likely representing an economy in pollen production for feeding function. Our findings suggest that the evolution of the trimorphic androecium is associated with division of labour in large pollen flowers and can represent a strong strategy for circumventing the pollen dilemma, optimizing the feeding function by reducing pollen grain investment from central anthers.


2021 ◽  
Vol 22 (12) ◽  
pp. 6610
Author(s):  
Zhixiong Chen ◽  
Yajing Li ◽  
Peigang Li ◽  
Xiaojie Huang ◽  
Mingxin Chen ◽  
...  

The developmental process of inflorescence and gametophytes is vital for sexual reproduction in rice. Multiple genes and conserved miRNAs have been characterized to regulate the process. The changes of miRNAs expression during the early development of rice inflorescence remain unknown. In this study, the analysis of miRNAs profiles in the early stage of rice inflorescence development identified 671 miRNAs, including 67 known and 44 novel differentially expressed miRNAs (DEMs). Six distinct clusters of miRNAs expression patterns were detected, and Cluster 5 comprised 110 DEMs, including unconserved, rice-specific osa-miR5506. Overexpression of osa-miR5506 caused pleiotropic abnormalities, including over- or under-developed palea, various numbers of floral organs and spikelet indeterminacy. In addition, the defects of ovaries development were frequently characterized by multiple megasporocytes, ovule-free ovary, megasporocyte degenerated and embryo sac degenerated in the transgenic lines. osa-miR5506 targeted REM transcription factor LOC_Os03g11370. Summarily, these results demonstrated that rice-specific osa-miR5506 plays an essential role in the regulation of floral organ number, spikelet determinacy and female gametophyte development in rice.


Sign in / Sign up

Export Citation Format

Share Document