scholarly journals Community structure follows simple assembly rules in microbial microcosms

2017 ◽  
Vol 1 (5) ◽  
Author(s):  
Jonathan Friedman ◽  
Logan M. Higgins ◽  
Jeff Gore
2016 ◽  
Author(s):  
Jonathan Friedman ◽  
Logan M. Higgins ◽  
Jeff Gore

IntroductionMicrobes typically form diverse communities of interacting species, whose activities have tremendous impact on the plants, animals, and humans they associate with1–3, as well as on the biogeochemistry of the entire planet4. The ability to predict the structure of these complex communities is crucial to understanding, managing, and utilizing them5. Here, we propose a simple, qualitative assembly rule that predicts community structure from the outcomes of competitions between small sets of species, and experimentally assess its predictive power using synthetic microbial communities. The rule's accuracy was evaluated by competing combinations of up to eight soil bacterial species, and comparing the experimentally observed outcomes to the predicted ones. Nearly all competitions resulted in a unique, stable community, whose composition was independent of the initial species fractions. Survival in three-species competitions was predicted by the pairwise outcomes with an accuracy of ~90%. Obtaining a similar level of accuracy in competitions between sets of seven or all eight species required incorporating additional information regarding the outcomes of the three-species competitions. Our results demonstrate experimentally the ability of a simple bottom-up approach to predict community structure. Such an approach is key for anticipating the response of communities to changing environments, designing interventions to steer existing communities to more desirable states, and, ultimately, rationally designing communities de novo6,7.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nittay Meroz ◽  
Nesli Tovi ◽  
Yael Sorokin ◽  
Jonathan Friedman

AbstractManaging and engineering microbial communities relies on the ability to predict their composition. While progress has been made on predicting compositions on short, ecological timescales, there is still little work aimed at predicting compositions on evolutionary timescales. Therefore, it is still unknown for how long communities typically remain stable after reaching ecological equilibrium, and how repeatable and predictable are changes when they occur. Here, we address this knowledge gap by tracking the composition of 87 two- and three-species bacterial communities, with 3–18 replicates each, for ~400 generations. We find that community composition typically changed during evolution, but that the composition of replicate communities remained similar. Furthermore, these changes were predictable in a bottom-up approach—changes in the composition of trios were consistent with those that occurred in pairs during coevolution. Our results demonstrate that simple assembly rules can hold even on evolutionary timescales, suggesting it may be possible to forecast the evolution of microbial communities.


2020 ◽  
Author(s):  
Nittay Meroz ◽  
Nesli Tovi ◽  
Yael Sorokin ◽  
Jonathan Friedman

AbstractManaging and engineering microbial communities relies on the ability to predict their composition. While progress has been made on predicting compositions on short, ecological timescales, there is still little work aimed at predicting compositions on evolutionary timescales. Therefore, it is still unknown for how long communities typically remain stable after reaching ecological equilibrium, and how repeatable and predictable are changes when they occur. Here, we address this knowledge gap by tracking the composition of 87 two- and three-species bacterial communities for ~400 generations. We find that community composition typically changed during evolution, but that the composition of replicate communities remained similar. Furthermore, these changes were predictable in a bottom-up approach - changes in the composition of trios were consistent with those that occurred in pairs during coevolution. Our results demonstrate that simple assembly rules can hold even on evolutionary timescales, suggesting it may be possible to forecast the evolution of microbial communities.


2011 ◽  
Vol 108 (3) ◽  
pp. 453-459 ◽  
Author(s):  
Sonomi SHIBUYA ◽  
Kohei KUBOTA ◽  
Masahiko OHSAWA ◽  
Zaal KIKVIDZE

SIMBIOSA ◽  
2014 ◽  
Vol 3 (2) ◽  
Author(s):  
Notowinarto Notowinarto ◽  
Ramses Ramses ◽  
Mulhairi Mulhairi

Bulang districts Batam Islands of  Riau province (Riau Islands), its consists of many islands with as well as having the potential diversity of coastal marine life in particular kinds of macro algae or seaweed. Conducted research aimed to determine the structure of macro- algal communities in the intertidal zone islands. The results of the identification of algal species found 16 species are: the Order of Chlorophyceae as 6 spesies; Order Phaeophyceae as 2 spesies; and Order Rhodophyceae as 8 spesies. The community structure at the five stations showed the highest values were found in the island of dominance Cicir (D ' = 0.79) , uniformity index values on Tengah Island (E ' = 0.99) , while the island Balak had the highest diversity index (H ' = 0.88) , with the abundance patterns of population structure on the island is pretty good Central . Results of correlation analysis of regression between IVI types of algae with the conditions of environmental quality suggests that there is a significance (Fhit ˃ F table and the value of r = > 90 %) between IVI algae Halimeda sp and Cryptarachne polyglandulosa at each station with a temperature parameter surface (⁰C) , depth temperature (⁰C) and pH values. Keywords : Algae, Community Structure, Important Value Index.


2017 ◽  
Vol 79 (2) ◽  
pp. 165-175 ◽  
Author(s):  
KL Vergin ◽  
N Jhirad ◽  
J Dodge ◽  
CA Carlson ◽  
SJ Giovannoni

2018 ◽  
Vol 81 (2) ◽  
pp. 109-124 ◽  
Author(s):  
JL Pinckney ◽  
C Tomas ◽  
DI Greenfield ◽  
K Reale-Munroe ◽  
B Castillo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document