Human alteration of global surface water storage variability

Nature ◽  
2021 ◽  
Vol 591 (7848) ◽  
pp. 78-81
Author(s):  
Sarah W. Cooley ◽  
Jonathan C. Ryan ◽  
Laurence C. Smith
2020 ◽  
Author(s):  
Riccardo Tortini ◽  
Nina Noujdina ◽  
Samantha Yeo ◽  
Martina Ricko ◽  
Charon M Birkett ◽  
...  

Abstract. The recent availability of freely and openly available satellite remote sensing products has enabled the implementation of global surface water monitoring to a level not previously possible. Here we present a global set of satellite-derived time series of surface water storage variations for lakes and reservoirs for a period that covers the satellite altimetry era. Our goal is to promote the use of satellite-derived products for the study of large inland water bodies, and to set the stage for the expected availability of products from the Surface Water and Ocean Topography (SWOT) mission, which will vastly expand the spatial coverage of such products, expected from 2021 on. Our general strategy is to estimate global surface water storage changes (ΔV) in large lakes and reservoirs using a combination of paired water surface elevation (WSE) and water surface area (WSA) extent products. Specifically, we use data produced by multiple satellite altimetry missions (TOPEX-Poseidon, Jason-1, Jason-2, Jason-3, and ENVISAT) from 1992 on, with surface extent estimated from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) from 2000 on. We leverage from relationships between elevation and surface area (i.e., hypsometry) to produce estimates of ΔV even during periods when either of the variables was not available. This approach is successful provided that there are strong relationships between the two variables during an overlapping period. Our target is to produce time series of ΔV as well as WSE and WSA for a set of 347 lakes and reservoirs globally for the 1992–2018 period. The data sets presented are publicly available and distributed via NASA’s Jet Propulsion Laboratory’s Physical Oceanography Distributed Active Archive Center (PO DAAC; https://podaac.jpl.nasa.gov/). Specifically, the WSE data set is available at https://doi.org/10.5067/UCLRS-GREV2 (Birkett et al., 2019), the WSA data set is available at https://doi.org/10.5067/UCLRS-AREV2 (Khandelwal and Kumar, 2019), and the ΔV data set is available at https://doi.org/10.5067/UCLRS-STOV2 (Tortini et al., 2019). The records we describe represent the most complete global surface water time series available from the launch of TOPEX-Poseidon in 1992 (beginning of the satellite altimetry era) to near-present. The production of long-term, consistent, and calibrated records of surface water cycle variables such as the data set presented here is of fundamental importance to baseline future SWOT products.


2020 ◽  
Vol 12 (2) ◽  
pp. 1141-1151 ◽  
Author(s):  
Riccardo Tortini ◽  
Nina Noujdina ◽  
Samantha Yeo ◽  
Martina Ricko ◽  
Charon M. Birkett ◽  
...  

Abstract. The recent availability of freely and openly available satellite remote sensing products has enabled the implementation of global surface water monitoring at a level not previously possible. Here we present a global set of satellite-derived time series of surface water storage variations for lakes and reservoirs for a period that covers the satellite altimetry era. Our goals are to promote the use of satellite-derived products for the study of large inland water bodies and to set the stage for the expected availability of products from the Surface Water and Ocean Topography (SWOT) mission, which will vastly expand the spatial coverage of such products, expected from 2021 on. Our general strategy is to estimate global surface water storage changes (ΔV) in large lakes and reservoirs using a combination of paired water surface elevation (WSE) and water surface area (WSA) extent products. Specifically, we use data produced by multiple satellite altimetry missions (TOPEX/Poseidon, Jason-1, Jason-2, Jason-3, and Envisat) from 1992 on, with surface extent estimated from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) from 2000 on. We leverage relationships between elevation and surface area (i.e., hypsometry) to produce estimates of ΔV even during periods when either of the variables was not available. This approach is successful provided that there are strong relationships between the two variables during an overlapping period. Our target is to produce time series of ΔV as well as of WSE and WSA for a set of 347 lakes and reservoirs globally for the 1992–2018 period. The data sets presented and their respective algorithm theoretical basis documents are publicly available and distributed via the Physical Oceanography Distributed Active Archive Center (PO DAAC; https://podaac.jpl.nasa.gov/, last access: 13 May 2020) of NASA's Jet Propulsion Laboratory. Specifically, the WSE data set is available at https://doi.org/10.5067/UCLRS-GREV2 (Birkett et al., 2019), the WSA data set is available at https://doi.org/10.5067/UCLRS-AREV2 (Khandelwal and Kumar, 2019), and the ΔV data set is available at https://doi.org/10.5067/UCLRS-STOV2 (Tortini et al., 2019). The records we describe represent the most complete global surface water time series available from the launch of TOPEX/Poseidon in 1992 (beginning of the satellite altimetry era) to the near present. The production of long-term, consistent, and calibrated records of surface water cycle variables such as in the data set presented here is of fundamental importance to baseline future SWOT products.


Author(s):  
Daniel I. Carey

This chapter follows water through the hydrologic cycle in Kentucky and shows how water shapes the land and supports the life. It describes and quantifies precipitation, stream flow runoff, groundwater infiltration, and surface water storage in ponds, lakes, and wetlands. Water use and wastewater production and treatment are discussed. Suitability of soils and geology for septic systems are analyzed. Flooding and floodplain management issues are presented. The chapter illustrates our responsibility to maintain this vital resource for all life in the Commonwealth.


Ecohydrology ◽  
2019 ◽  
Vol 12 (8) ◽  
Author(s):  
Peifeng Xiong ◽  
Zhifei Chen ◽  
Quan Yang ◽  
Junjie Zhou ◽  
He Zhang ◽  
...  

2009 ◽  
Vol 36 (9) ◽  
Author(s):  
Shin-Chan Han ◽  
Hyungjun Kim ◽  
In-Young Yeo ◽  
Pat Yeh ◽  
Taikan Oki ◽  
...  

1992 ◽  
Vol 28 (5) ◽  
pp. 1207-1219 ◽  
Author(s):  
S. Mahendrarajah ◽  
P. G. Warr ◽  
A. J. Jakeman

2013 ◽  
Vol 7 (6) ◽  
pp. 6143-6170 ◽  
Author(s):  
N. S. Arnold ◽  
A. F. Banwell ◽  
I. C. Willis

Abstract. Seasonal meltwater lakes on the Greenland Ice Sheet form when surface runoff is temporarily trapped in surface topographic depressions. The development of such lakes affects both the surface energy balance and dynamics of the ice sheet. Although areal extents, depths, and lifespans of lakes can be inferred from satellite imagery, such observational studies have a limited temporal resolution. Here, we adopt a modelling-based strategy to estimate the seasonal evolution of surface water storage for the ~ 3600 km2 Paakitsoq region of W. Greenland. We use a high-resolution time dependent surface mass balance model to calculate surface melt, a supraglacial water routing model to calculate lake filling and a prescribed water-volume based threshold to predict lake drainage events. The model shows good agreement between modelled lake locations and volumes and those observed in 9 Landsat 7 ETM+ images from 2001, 2002 and 2005. We use the model to investigate the lake water volume required to trigger drainage, and the impact that this threshold volume has on the proportion of meltwater that runs off the ice supraglacially, is stored in surface lakes, or enters the subglacial drainage system. Model performance is maximised with prescribed lake volume thresholds between 4000 and 7500 times the local ice thickness. For these thresholds, lakes transiently store < 40% of meltwater at the beginning of the melt season, decreasing to ~ 5 to 10% by the middle of the melt season. 40 to 50% of meltwater runs off the ice surface directly, and the remainder enters the subglacial drainage system through moulins at the bottom of drained lakes.


Sign in / Sign up

Export Citation Format

Share Document