The Waters of Kentucky

Author(s):  
Daniel I. Carey

This chapter follows water through the hydrologic cycle in Kentucky and shows how water shapes the land and supports the life. It describes and quantifies precipitation, stream flow runoff, groundwater infiltration, and surface water storage in ponds, lakes, and wetlands. Water use and wastewater production and treatment are discussed. Suitability of soils and geology for septic systems are analyzed. Flooding and floodplain management issues are presented. The chapter illustrates our responsibility to maintain this vital resource for all life in the Commonwealth.

Ecohydrology ◽  
2019 ◽  
Vol 12 (8) ◽  
Author(s):  
Peifeng Xiong ◽  
Zhifei Chen ◽  
Quan Yang ◽  
Junjie Zhou ◽  
He Zhang ◽  
...  

2009 ◽  
Vol 36 (9) ◽  
Author(s):  
Shin-Chan Han ◽  
Hyungjun Kim ◽  
In-Young Yeo ◽  
Pat Yeh ◽  
Taikan Oki ◽  
...  

2020 ◽  
Author(s):  
Bridget Scanlon ◽  
Ashraf Rateb ◽  
Alexander Sun ◽  
Himanshu Save

<p>There is considerable concern about water depletion caused by climate extremes (e.g., drought) and human water use in the U.S. and globally. Major U.S. aquifers provide an ideal laboratory to assess water storage changes from GRACE satellites because the aquifers are intensively monitored and modeled. The objective of this study was to assess the relative importance of climate extremes and human water use on GRACE Total Water Storage Anomalies in 14 major U.S. aquifers and to evaluate the reliability of the GRACE data by comparing with groundwater level monitoring (~-23,000 wells) and regional and global models. We quantified total water and groundwater storage anomalies over 2002 – 2017 from GRACE satellites and compared GRACE data with groundwater level monitoring and regional and global modeling results.  </p> <p>The results show that water storage changes were controlled primarily by climate extremes and amplified or dampened by human water use, primarily irrigation. The results were somewhat surprising, with stable or rising long-term trends in the majority of aquifers with large scale depletion limited to agricultural areas in the semi-arid southwest and southcentral U.S. GRACE total water storage in the California Central Valley and Central/Southern High Plains aquifers was depleted by drought and amplified by groundwater irrigation, totaling ~70 km<sup>3</sup> (2002–2017), about 2× the capacity of Lake Mead, the largest surface reservoir in the U.S. In the Pacific Northwest and Northern High Plains aquifers, lower drought intensities were partially dampened by conjunctive use of surface water and groundwater for irrigation and managed aquifer recharge, increasing water storage by up to 22 km<sup>3</sup> in the Northern High Plains over the 15 yr period. GRACE-derived total water storage changes in the remaining aquifers were stable or slightly rising throughout the rest of the U.S.</p> <p>GRACE data compared favorably with composite groundwater level hydrographs for most aquifers except for those with very low signals, indicating that GRACE tracks groundwater storage dynamics. Comparison with regional models was restricted to the limited overlap periods but showed good correspondence for modeled aquifers with the exception of the Mississippi Embayment, where the modeled trend is 4x the GRACE trend. The discrepancy is attributed to uncertainties in model storage parameters and groundwater/surface water interactions. Global hydrologic models (WGHM-2d and PCR-GLOBWB-5.0 overestimated trends in groundwater storage in heavily exploited aquifers in the southwestern and southcentral U.S. Land surface models (CLSM-F2.5 and NOAH-MP) seem to track GRACE TWSAs better than global hydrologic models but underestimated TWS trends in aquifers dominated by irrigation.</p> <p>Intercomparing GRACE, traditional hydrologic monitoring, and modeling data underscore the importance of considering all data sources to constrain water storage changes.  GRACE satellite data have critical implications for many nationally important aquifers, highlighting the importance of conjunctively using surface-water and groundwater and managed aquifer recharge to enhance sustainable development.</p>


1992 ◽  
Vol 28 (5) ◽  
pp. 1207-1219 ◽  
Author(s):  
S. Mahendrarajah ◽  
P. G. Warr ◽  
A. J. Jakeman

2013 ◽  
Vol 7 (6) ◽  
pp. 6143-6170 ◽  
Author(s):  
N. S. Arnold ◽  
A. F. Banwell ◽  
I. C. Willis

Abstract. Seasonal meltwater lakes on the Greenland Ice Sheet form when surface runoff is temporarily trapped in surface topographic depressions. The development of such lakes affects both the surface energy balance and dynamics of the ice sheet. Although areal extents, depths, and lifespans of lakes can be inferred from satellite imagery, such observational studies have a limited temporal resolution. Here, we adopt a modelling-based strategy to estimate the seasonal evolution of surface water storage for the ~ 3600 km2 Paakitsoq region of W. Greenland. We use a high-resolution time dependent surface mass balance model to calculate surface melt, a supraglacial water routing model to calculate lake filling and a prescribed water-volume based threshold to predict lake drainage events. The model shows good agreement between modelled lake locations and volumes and those observed in 9 Landsat 7 ETM+ images from 2001, 2002 and 2005. We use the model to investigate the lake water volume required to trigger drainage, and the impact that this threshold volume has on the proportion of meltwater that runs off the ice supraglacially, is stored in surface lakes, or enters the subglacial drainage system. Model performance is maximised with prescribed lake volume thresholds between 4000 and 7500 times the local ice thickness. For these thresholds, lakes transiently store < 40% of meltwater at the beginning of the melt season, decreasing to ~ 5 to 10% by the middle of the melt season. 40 to 50% of meltwater runs off the ice surface directly, and the remainder enters the subglacial drainage system through moulins at the bottom of drained lakes.


2015 ◽  
Vol 4 ◽  
pp. 15-35 ◽  
Author(s):  
Fabrice Papa ◽  
Frédéric Frappart ◽  
Yoann Malbeteau ◽  
Mohammad Shamsudduha ◽  
Venugopal Vuruputur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document