scholarly journals Pristine populations of habitat-forming gorgonian species on the Antarctic continental shelf

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Stefano Ambroso ◽  
Janire Salazar ◽  
Rebeca Zapata-Guardiola ◽  
Luisa Federwisch ◽  
Claudio Richter ◽  
...  
2021 ◽  
Author(s):  
Hannah Dawson ◽  
Adele Morrison ◽  
Veronica Tamsitt ◽  
Matthew England

<p><span xml:lang="EN-US" data-contrast="auto"><span>The Antarctic margin is surrounded by two westward flowing currents: the Antarctic Slope Current and the Antarctic Coastal Current. The former influences key processes near the Antarctic margin by regulating the flow of heat and nutrients onto and off the continental shelf, while together they </span></span><span xml:lang="EN-US" data-contrast="auto"><span>advect</span></span><span xml:lang="EN-US" data-contrast="auto"><span> nutrients, biological organisms, and temperature and salinity anomalies around the coastline, providing a connective link between different shelf regions. However, the extent to which these currents transport water from one sector of the continental shelf to another, and the timescales over which this occurs, remain poorly understood. Concern that crucial water formation sites around the Antarctic coastline could respond to non-local freshwater forcing </span></span><span><span xml:lang="EN-US" data-contrast="auto"><span>from ice shel</span></span></span><span><span xml:lang="EN-US" data-contrast="auto"><span>f meltwater</span></span></span> <span xml:lang="EN-US" data-contrast="auto"><span>motivates a more thorough understanding of zonal connectivity around Antarctica. In this study, we use daily velocity fields from a global high-resolution ocean-sea ice model, combined with the <span>Lagrangian</span> tracking software Parcels, to investigate the pathways and timescales connecting different regions of the Antarctic continental shelf<span> with a view to understanding</span><span> the timescales of meltwater transport around the continent</span>. Virtual particles are released over the continental shelf, poleward of the 1000 <span>metre</span> isobath, and are tracked for 20 years. Our results show a strong seasonal cycle connecting different sectors of the Antarctic continent, with more particles arriving further downstream during winter than during summer months. Strong advective links exist between West Antarctica and the Ross Sea while shelf geometry in some other regions acts as barriers to transport. We also highlight the varying importance of the Antarctic Slope Current and Antarctic Coastal Current in connecting different sectors of the coastline. Our results help to improve our understanding of circum-Antarctic connectivity <span>and the timescales </span><span>of meltwater transport from source regions to downstream </span><span>shelf locations. </span><span>Further</span><span>more, t</span><span>he timescales and pathways we </span><span>present </span><span>p</span>rovide a baseline from which to assess long-term changes in Antarctic coastal circulation due to local and remote forcing.<br></span></span></p>


2017 ◽  
Author(s):  
Pierre Mathiot ◽  
Adrian Jenkins ◽  
Christopher Harris ◽  
Gurvan Madec

Abstract. Ice shelf/ocean interactions are a major source of fresh water on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean/sea ice model NEMO currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface) inclusion of open sub-ice-shelf leads to a decrease sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of HSSW on the Ross and Weddell Sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the under ice shelf seas overturning circulation by introducing the meltwater over the depth range of the ice shelf base, rather than at the surface is also tested. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf than the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely-used “3 equations” ice shelf melting formulation enables an interactive computation of melting that has been assessed. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for Amery, Getz and George VI ice shelves are considerably overestimated.


Sign in / Sign up

Export Citation Format

Share Document