coastal current
Recently Published Documents


TOTAL DOCUMENTS

466
(FIVE YEARS 107)

H-INDEX

44
(FIVE YEARS 3)

2022 ◽  
Author(s):  
◽  
Astrid Pacini

The ventilation of intermediate waters in the Labrador Sea has important implications for the strength of the Atlantic Meridional Overturning Circulation. Boundary current-interior interactions regulate the exchange of properties between the slope and the basin, which in turn regulates the magnitude of interior convection and the export of ventilated waters from the subpolar gyre. This thesis characterizes theWest Greenland Boundary Current System near Cape Farewell across a range of spatio-temporal scales. The boundary current system is composed of three velocity cores: (1) the West Greenland Coastal Current (WGCC), transporting Greenland and Arctic meltwaters on the shelf; (2) the West Greenland Current (WGC), which advects warm, saline Atlantic-origin water at depth, meltwaters at the surface, and newly-ventilated Labrador Sea Water (LSW); and (3) the Deep Western Boundary Current, which carries dense overflow waters ventilated in the Nordic Seas. The seasonal presence of the LSW and Atlantic-origin water are dictated by air-sea buoyancy forcing, while the seasonality of the WGCC is governed by remote wind forcing and the propagation of coastally trapped waves from East Greenland. Using mooring data and hydrographic surveys, we demonstrate mid-depth intensified cyclones generated at Denmark Strait are found offshore of the WGC and enhance the overflow water transport at synoptic timescales. Using mooring, hydrographic, and satellite data, we demonstrate that the WGC undergoes extensive meandering due to baroclinic instability that is enhanced in winter due to LSW formation adjacent to the current. This leads to the production of small-scale, anticyclonic eddies that can account for the entirety of wintertime heat loss within the Labrador Sea. The meanders are shown to trigger the formation of Irminger Rings downstream. Using mooring, hydrographic, atmospheric, and Lagrangian data, and a mixing model, we find that strong atmospheric storms known as forward tip jets cause upwelling at the shelfbreak that triggers offshore export of freshwater. This freshwater flux can explain the observed lack of ventilation in the eastern Labrador Sea. Together, this thesis documents previously unobserved interannual, seasonal, and synoptic-scale variability and dynamics within the West Greenland boundary current system that must be accounted for in future modeling.


2022 ◽  
Vol 8 ◽  
Author(s):  
Cian Kelly ◽  
Finn Are Michelsen ◽  
Jeppe Kolding ◽  
Morten Omholt Alver

Norwegian spring spawning herring is a migratory pelagic fish stock that seasonally navigates between distant locations in the Norwegian Sea. The spawning migration takes place between late winter and early spring. In this article, we present an individual-based model that simulated the spawning migration, which was tuned and validated against observation data. Individuals were modelled on a continuous grid coupled to a physical oceanographic model. We explore the development of individual model states in relation to local environmental conditions and predict the distribution and abundance of individuals in the Norwegian Sea for selected years (2015–2020). Individuals moved position mainly according to the prevailing coastal current. A tuning procedure was used to minimize the deviations between model and survey estimates at specific time stamps. Furthermore, 4 separate scenarios were simulated to ascertain the sensitivity of the model to initial conditions. Subsequently, one scenario was evaluated and compared with catch data in 5 day periods within the model time frame. Agreement between model and catch data varies throughout the season and between years. Regardless, emergent properties of the migration are identifiable that match observations, particularly migration trajectories that run perpendicular to deep bathymetry and counter the prevailing current. The model developed is efficient to implement and can be extended to generate multiple realizations of the migration path. This model, in combination with various sources of fisheries-dependent data, can be applied to improve real-time estimates of fish distributions.


2022 ◽  
Vol 131 (1) ◽  
Author(s):  
V Vijith ◽  
S R Shetye ◽  
A D Gouveia ◽  
S S C Shenoi ◽  
G S Michael ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 116
Author(s):  
Zhiwei You ◽  
Lingxiao Liu ◽  
Brandon J. Bethel ◽  
Changming Dong

Although a variety of ocean mesoscale eddy datasets are available for researchers to study eddy properties throughout the global ocean, subtle differences in how these datasets are produced often lead to large differences between one another. This study compares the Global Ocean Mesoscale Eddy Atmospheric-Oceanic-Biological interaction Observational Dataset (GOMEAD) with the well-recognized Mesoscale Eddy Trajectory Atlas in four regions with strong eddy activity: the Northwest Pacific Subtropical Front (SF), Kuroshio Extension (KE), South China Sea (SCS), and California Coastal Current (CC), and assesses the relative advantages and disadvantages of each. It was identified that while there is a slight difference in the total number of eddies detected in each dataset, the frequency distribution of eddy radii presents a right-skewed normal distribution, tending towards larger radii eddies, and there are more short- than long-lived eddies. Interestingly, the total number of GOMEAD eddies is 8% smaller than in the META dataset and this is most likely caused by the GOMEAD dataset’s underestimation of total eddy numbers and lifespans due to their presence near islands, and the tendency to eliminate eddies from its database if their radii are too small to be adequately detected. By contrast, the META dataset, due to tracking jumps in detecting eddies, may misidentify two eddies as a single eddy, reducing total number of eddies detected. Additionally, because the META dataset is reliant on satellite observations of sea surface level anomalies (SLAs), when SLAs are weak, the META dataset struggles to detect eddies. The GOMEAD dataset, by contrast, is reliant on applying vector geometry to detect and track eddies, and thus, is largely insulated from this problem. Thus, although both datasets are excellent in detecting and characterizing eddies, users should use the GOMEAD dataset when the region of interest is far from islands or when SLAs are weak but use the META dataset if the region of interest is populated by islands, or if SLAs are intense.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8450
Author(s):  
Xiaoyu Zhang ◽  
Yong Du ◽  
Zhihua Mao ◽  
Lei Bi ◽  
Jianyu Chen ◽  
...  

The variable optical properties of chromophoric dissolved organic matter (CDOM) under the complicated dynamic marine environment make it difficult to establish a robust inversion algorithm for quantifying the dissolved organic carbon (DOC). To better understand the main factors affecting the relationship between the DOC and the CDOM when the Changjiang diluted water (CDW) interacts with the marine currents on the wide continental shelf, we measured the DOC concentration, the absorption, and the fluorescence spectra of the CDOM along the main axis and the northern boundary of the CDW. The sources of DOC and their impacts on the relationship between the optical properties of the DOC and CDOM are discussed. We reached the following conclusions: There are strong positive correlations between the absorptive and fluorescent properties of the DOC and the CDOM as a whole. The dilution of the terrestrial DOC carried by the CDW through mixing with saline sea water is the dominant mechanism controlling the characteristics of the optical properties of the CDOM. CDOM optical properties can be adopted to establish inversion models in retrieving DOC in Changjiang River Estuary. It is concluded that the introduction of extra DOC from different sources is the main factor causing the regional optical complexity leading to the bias of DOC estimation rather than removal mechanism. As whole, the input of polluted water from Huangpujiang River with abnormally high a(355) and Fs(355) will induce the overestimation of DOC. In the main axis of CDW, the impact from autochthonous DOC input to the correlation between DOC and CDOM can be neglected in comparison with conservative dilution procedure. The relationship between the DOC and the CDOM on the northern boundary of the CDW is more complicated, which can be attributed to the continuous input of terrestrial material from the Old Huanghe Delta by the Subei Coastal Current, the input of materials from the Yellow sea by the Yellow Sea Warm Western Coastal Current, and the input of materials from the Changjiang Basin by the CDW. The results of this study suggest that long-term observations of the regional variations in the DOM inputs from multiple sources in the interior of the CDW are essential, which is conducive to assess the degree of impact to the DOC estimation through the CDOM in the East China Sea.


2021 ◽  
Vol 18 (22) ◽  
pp. 5967-6029
Author(s):  
Puthenveettil Narayana Menon Vinayachandran ◽  
Yukio Masumoto ◽  
Michael J. Roberts ◽  
Jenny A. Huggett ◽  
Issufo Halo ◽  
...  

Abstract. The Indian Ocean presents two distinct climate regimes. The north Indian Ocean is dominated by the monsoons, whereas the seasonal reversal is less pronounced in the south. The prevailing wind pattern produces upwelling along different parts of the coast in both hemispheres during different times of the year. Additionally, dynamical processes and eddies either cause or enhance upwelling. This paper reviews the phenomena of upwelling along the coast of the Indian Ocean extending from the tip of South Africa to the southern tip of the west coast of Australia. Observed features, underlying mechanisms, and the impact of upwelling on the ecosystem are presented. In the Agulhas Current region, cyclonic eddies associated with Natal pulses drive slope upwelling and enhance chlorophyll concentrations along the continental margin. The Durban break-away eddy spun up by the Agulhas upwells cold nutrient-rich water. Additionally, topographically induced upwelling occurs along the inshore edges of the Agulhas Current. Wind-driven coastal upwelling occurs along the south coast of Africa and augments the dynamical upwelling in the Agulhas Current. Upwelling hotspots along the Mozambique coast are present in the northern and southern sectors of the channel and are ascribed to dynamical effects of ocean circulation in addition to wind forcing. Interaction of mesoscale eddies with the western boundary, dipole eddy pair interactions, and passage of cyclonic eddies cause upwelling. Upwelling along the southern coast of Madagascar is caused by the Ekman wind-driven mechanism and by eddy generation and is inhibited by the Southwest Madagascar Coastal Current. Seasonal upwelling along the East African coast is primarily driven by the northeast monsoon winds and enhanced by topographically induced shelf breaking and shear instability between the East African Coastal Current and the island chains. The Somali coast presents a strong case for the classical Ekman type of upwelling; such upwelling can be inhibited by the arrival of deeper thermocline signals generated in the offshore region by wind stress curl. Upwelling is nearly uniform along the coast of Arabia, caused by the alongshore component of the summer monsoon winds and modulated by the arrival of Rossby waves generated in the offshore region by cyclonic wind stress curl. Along the west coast of India, upwelling is driven by coastally trapped waves together with the alongshore component of the monsoon winds. Along the southern tip of India and Sri Lanka, the strong Ekman transport drives upwelling. Upwelling along the east coast of India is weak and occurs during summer, caused by alongshore winds. In addition, mesoscale eddies lead to upwelling, but the arrival of river water plumes inhibits upwelling along this coast. Southeasterly winds drive upwelling along the coast of Sumatra and Java during summer, with Kelvin wave propagation originating from the equatorial Indian Ocean affecting the magnitude and extent of the upwelling. Both El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events cause large variability in upwelling here. Along the west coast of Australia, which is characterized by the anomalous Leeuwin Current, southerly winds can cause sporadic upwelling, which is prominent along the southwest, central, and Gascoyne coasts during summer. Open-ocean upwelling in the southern tropical Indian Ocean and within the Sri Lanka Dome is driven primarily by the wind stress curl but is also impacted by Rossby wave propagations. Upwelling is a key driver enhancing biological productivity in all sectors of the coast, as indicated by enhanced sea surface chlorophyll concentrations. Additional knowledge at varying levels has been gained through in situ observations and model simulations. In the Mozambique Channel, upwelling simulates new production and circulation redistributes the production generated by upwelling and mesoscale eddies, leading to observations of higher ecosystem impacts along the edges of eddies. Similarly, along the southern Madagascar coast, biological connectivity is influenced by the transport of phytoplankton from upwelling zones. Along the coast of Kenya, both productivity rates and zooplankton biomass are higher during the upwelling season. Along the Somali coast, accumulation of upwelled nutrients in the northern part of the coast leads to spatial heterogeneity in productivity. In contrast, productivity is more uniform along the coasts of Yemen and Oman. Upwelling along the west coast of India has several biogeochemical implications, including oxygen depletion, denitrification, and high production of CH4 and dimethyl sulfide. Although weak, wind-driven upwelling leads to significant enhancement of phytoplankton in the northwest Bay of Bengal during the summer monsoon. Along the Sumatra and Java coasts, upwelling affects the phytoplankton composition and assemblages. Dissimilarities in copepod assemblages occur during the upwelling periods along the west coast of Australia. Phytoplankton abundance characterizes inshore edges of the slope during upwelling season, and upwelling eddies are associated with krill abundance. The review identifies the northern coast of the Arabian Sea and eastern coasts of the Bay of Bengal as the least observed sectors. Additionally, sustained long-term observations with high temporal and spatial resolutions along with high-resolution modelling efforts are recommended for a deeper understanding of upwelling, its variability, and its impact on the ecosystem.


Author(s):  
Ahmad Fehmi Dilmahamod ◽  
Johannes Karstensen ◽  
Heiner Dietze ◽  
Ulrike Löptien ◽  
Katja Fennel

AbstractThe physical processes driving the genesis of surface- and subsurface-intensified cyclonic and anticyclonic eddies originating from the coastal current system of the Mauritanian Upwelling Region are investigated using a high-resolution (~1.5 km) configuration of GFDL’s Modular Ocean Model. Estimating an energy budget for the boundary current reveals a baroclinically unstable state during its intensification phase in boreal summer and which is driving eddy generation within the near-coastal region. The mean poleward coastal flow’s interaction with the sloping topography induces enhanced anticyclonic vorticity, with potential vorticity close to zero generated in the bottom boundary layer. Flow separation at sharp topographic bends intensifies the anticyclonic vorticity, and submesoscale structures of low PV coalesce to form anticyclonic vortices. A combination of offshore Ekman transport and horizontal advection determined the amount of SACW in an anticyclonic eddy. A vortex with a relatively dense and low PV core will form an anticyclonic mode-water eddy, which will subduct along isopycnals while propagating offshore and hence be shielded from surface buoyancy forcing. Less contribution of dense SACW promotes the generation of surface anticyclonic eddies as the core is composed of a lighter water mass, which causes the eddy to stay closer to the surface and hence be exposed to surface buoyancy forcing. Simulated cyclonic eddies are formed between the rotational flow of an offshore anticyclonic vortex and a poleward flowing boundary current, with eddy potential energy being the dominant source of eddy kinetic energy. All three types of eddies play a key role in the exchange between the Mauritanian Coastal currents system and the adjacent eastern boundary shadow zone region.


Author(s):  
Denghui Li ◽  
Zhengui Wang ◽  
Huijie Xue ◽  
Andrew C. Thomas ◽  
Neal Pettigrew ◽  
...  

2021 ◽  
Vol 8 (4) ◽  
pp. 205-210
Author(s):  
Chang-Woong Shin ◽  
Dimitri Gutiérrez

The northern coast of Peru is a region that can rapidly detect the impact of an El Niño. To investigate the effects of the 2015-2016 El Niño on the oceanographic environment of the northern coast of Peru, the temperature and current data obtained from moored equipment at an oil platform were analyzed. Strong coastal along-shore currents of more than 0.60 m·s-1 were observed three times, although the mean current speed was 0.10 m·s-1 flowing toward the south-southwest. After the first strong current, the bottom temperature increased and the mixed layer deepened and remained there during the El Niño event. The temperature reached a maximum after the strong coastal current, then decreased gradually. An analysis of wind and sea surface height anomalies revealed that the coastal strong current was caused by Kelvin waves and the deepening of the mixed layer was not related to local winds, but to coastal Kelvin waves from the equator during the El Niño event.


Sign in / Sign up

Export Citation Format

Share Document