scholarly journals Evidence for and against deformed wing virus spillover from honey bees to bumble bees: a reverse genetic analysis

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Olesya N. Gusachenko ◽  
Luke Woodford ◽  
Katharin Balbirnie-Cumming ◽  
Eugene V. Ryabov ◽  
David J. Evans

Abstract Deformed wing virus (DWV) is a persistent pathogen of European honey bees and the major contributor to overwintering colony losses. The prevalence of DWV in honey bees has led to significant concerns about spillover of the virus to other pollinating species. Bumble bees are both a major group of wild and commercially-reared pollinators. Several studies have reported pathogen spillover of DWV from honey bees to bumble bees, but evidence of a sustained viral infection characterized by virus replication and accumulation has yet to be demonstrated. Here we investigate the infectivity and transmission of DWV in bumble bees using the buff-tailed bumble bee Bombus terrestris as a model. We apply a reverse genetics approach combined with controlled laboratory conditions to detect and monitor DWV infection. A novel reverse genetics system for three representative DWV variants, including the two master variants of DWV—type A and B—was used. Our results directly confirm DWV replication in bumble bees but also demonstrate striking resistance to infection by certain transmission routes. Bumble bees may support DWV replication but it is not clear how infection could occur under natural environmental conditions.

Author(s):  
Olesya N Gusachenko ◽  
Luke Woodford ◽  
Katharin Balbirnie-Cumming ◽  
Ryabov Eugene V Ryabov ◽  
David J Evans

AbstractDeformed wing virus (DWV) is a persistent pathogen of European honey bees and the major contributor to overwintering colony losses. The prevalence of DWV in honey bees has led to significant concerns about spillover of the virus to other pollinating species. Bumble bees are both a major group of wild and commercially-reared pollinators. Several studies have reported pathogen spillover of DWV from honey bees to bumble bees, but evidence of a true sustained viral infection has yet to be demonstrated. Here we investigate the infectivity and transmission of DWV in bumble bees using the buff-tailed bumble bee Bombus terrestris as a model. We apply a reverse genetics approach combined with controlled laboratory conditions to detect and monitor DWV infection. A novel reverse genetics system for three representative DWV variants, including the two master variants of DWV - type A and B - was used. Our results directly confirm DWV replication in bumble bees but also demonstrate striking resistance to infection by certain routes. Bumble bees may support DWV replication but it is not clear how infection could occur under natural environmental conditions.


Author(s):  
Luke Woodford ◽  
David J Evans

Abstract Deformed wing virus (DWV) is the most important viral pathogen of honey bees. It usually causes asymptomatic infections but, when vectored by the ectoparasitic mite Varroa destructor, it is responsible for the majority of overwintering colony losses globally. Although DWV was discovered four decades ago, research has been hampered by the absence of an in vitro cell culture system or the ability to culture pure stocks of the virus. The recent development of reverse genetic systems for DWV go some way to addressing these limitations. They will allow the investigation of specific questions about strain variation, host tropism and pathogenesis to be answered, and are already being exploited to study tissue tropism and replication in Varroa and non-Apis pollinators. Three areas neatly illustrate the advances possible with reverse genetic approaches; 1) strain variation and recombination, in which reverse genetics has highlighted similarities rather than differences between virus strains, 2) analysis of replication kinetics in both honey bees and Varroa, in studies which likely explain the near clonality of virus populations often reported and, 3) pathogen spillover to non-Apis pollinators, using genetically-tagged viruses to accurately monitor replication and infection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcel Mertes ◽  
Julie Carcaud ◽  
Jean-Christophe Sandoz

AbstractSociality is classified as one of the major transitions in evolution, with the largest number of eusocial species found in the insect order Hymenoptera, including the Apini (honey bees) and the Bombini (bumble bees). Bumble bees and honey bees not only differ in their social organization and foraging strategies, but comparative analyses of their genomes demonstrated that bumble bees have a slightly less diverse family of olfactory receptors than honey bees, suggesting that their olfactory abilities have adapted to different social and/or ecological conditions. However, unfortunately, no precise comparison of olfactory coding has been performed so far between honey bees and bumble bees, and little is known about the rules underlying olfactory coding in the bumble bee brain. In this study, we used in vivo calcium imaging to study olfactory coding of a panel of floral odorants in the antennal lobe of the bumble bee Bombus terrestris. Our results show that odorants induce reproducible neuronal activity in the bumble bee antennal lobe. Each odorant evokes a different glomerular activity pattern revealing this molecule’s chemical structure, i.e. its carbon chain length and functional group. In addition, pairwise similarity among odor representations are conserved in bumble bees and honey bees. This study thus suggests that bumble bees, like honey bees, are equipped to respond to odorants according to their chemical features.


2021 ◽  
Author(s):  
Marcel Mertes ◽  
Julie Carcaud ◽  
Jean-Christophe Sandoz

AbstractSociality is classified as one of the major transitions in evolution, with the largest number of eusocial species found in the insect order Hymenoptera, including the Apini (honey bees) and the Bombini (bumble bees). Bumble bees and honey bees not only differ in their social organization and foraging strategies, but comparative analyses of their genomes demonstrated that bumble bees have a slightly less diverse family of olfactory receptors than honeybees, suggesting that their olfactory abilities have adapted to different social and/or ecological conditions. However, unfortunately, no precise comparison of olfactory coding has been performed so far between honey bees and bumble bees, and little is known about the rules underlying olfactory coding in the bumble bee brain. In this study, we used in vivo calcium imaging to study olfactory coding of a panel of floral odorants in the antennal lobe (AL) of the bumble bee Bombus terrestris. Our results show that odorants evoke consistent neuronal activity in the bumble bee antennal lobe. Each odorant evokes a different glomerular activity pattern revealing this molecule’s chemical structure, i.e. its carbon chain length and functional group. Response intensity as well as odor-similarity relationships were highly correlated to those measured in honey bees. This study thus suggests that bumble bees, like honey bees, are equipped to respond to odorants according to their chemical features.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francisco Posada-Florez ◽  
Zachary S. Lamas ◽  
David J. Hawthorne ◽  
Yanping Chen ◽  
Jay D. Evans ◽  
...  

AbstractTransmission routes impact pathogen virulence and genetics, therefore comprehensive knowledge of these routes and their contribution to pathogen circulation is essential for understanding host–pathogen interactions and designing control strategies. Deformed wing virus (DWV), a principal viral pathogen of honey bees associated with increased honey bee mortality and colony losses, became highly virulent with the spread of its vector, the ectoparasitic mite Varroa destructor. Reproduction of Varroa mites occurs in capped brood cells and mite-infested pupae from these cells usually have high levels of DWV. The removal of mite-infested pupae by worker bees, Varroa Sensitive Hygiene (VSH), leads to cannibalization of pupae with high DWV loads, thereby offering an alternative route for virus transmission. We used genetically tagged DWV to investigate virus transmission to and between worker bees following pupal cannibalisation under experimental conditions. We demonstrated that cannibalization of DWV-infected pupae resulted in high levels of this virus in worker bees and that the acquired virus was then transmitted between bees via trophallaxis, allowing circulation of Varroa-vectored DWV variants without the mites. Despite the known benefits of hygienic behaviour, it is possible that higher levels of VSH activity may result in increased transmission of DWV via cannibalism and trophallaxis.


2020 ◽  
Vol 113 (3) ◽  
pp. 1055-1061 ◽  
Author(s):  
Laura Šimenc ◽  
Urška Kuhar ◽  
Urška Jamnikar-Ciglenečki ◽  
Ivan Toplak

Abstract The complete genome of Lake Sinai virus 3 (LSV3) was sequenced by the Ion Torrent next-generation sequencing (NGS) technology from an archive sample of honey bees collected in 2010. This strain M92/2010 is the first complete genome sequence of LSV lineage 3. From October 2016 to December 2017, 56 honey bee samples from 32 different locations and 41 bumble bee samples from five different locations were collected. These samples were tested using a specific reverse transcriptase-polymerase chain reaction (RT-PCR) method; 75.92% of honey bee samples and 17.07% of bumble bee samples were LSV-positive with the RT-PCR method. Phylogenetic comparison of 557-base pair-long RNA-dependent RNA polymerase (RdRp) genome region of selected 23 positive samples of honey bees and three positive bumble bee samples identified three different LSV lineages: LSV1, LSV2, and LSV3. The LSV3 lineage was confirmed for the first time in Slovenia in 2010, and the same strain was later detected in several locations within the country. The LSV strains detected in bumble bees are from 98.6 to 99.4% identical to LSV strains detected among honey bees in the same territory.


1987 ◽  
Vol 65 (9) ◽  
pp. 2168-2176 ◽  
Author(s):  
K. W. Richards

Diversity, density, efficiency, and effectiveness of pollinators of cicer milkvetch, Astragalus cicer L., grown at two locations in southern Alberta were studied from 1978 to 1983. Twenty-seven species of bees were identified as pollinators. At Lethbridge, honey bees (Apis mellifera) comprised 74% of the observations, bumble bees 16%, and leafcutter bees 10%, while at Spring Coulee, the proportions were honey bees 14%, bumble bees 69%, and leafcutter bees 17%. The rate of foraging by pollinator species from flower to flower varied; bumble bee species, especially Bombus nevadensis Cress., foraged consistently more efficiently than honey bees or alfalfa leafcutter bees, Megachile rotundata (F.). A theoretical approach used to predict the bee populations required to pollinate varying flower densities shows that the population of B. nevadensis required is about half those of Bombus huntii Greene and M. rotundata and less than one-quarter that of the honey bee. Pollination by B. nevadensis consistently resulted in more seeds per pod than with any other bumble bee species, the honey bee, or M. rotundata. Of the nine species of bumble bee that established colonies in artificial domiciles near the field, B. nevadensis established the most colonies each year. The number of workers and sexuals produced per colony varied considerably among bumble bee species with only 55% of the colony establishments producing workers and 31% producing sexuals. The propagation rate and quality of alfalfa leafcutter bees produced on cicer milkvetch was excellent.


2017 ◽  
Vol 91 (16) ◽  
Author(s):  
Emily J. Remnant ◽  
Mang Shi ◽  
Gabriele Buchmann ◽  
Tjeerd Blacquière ◽  
Edward C. Holmes ◽  
...  

ABSTRACT Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees (Apis mellifera) has changed dramatically since the emergence of the parasitic mite Varroa destructor, which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa. This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management. IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales. Collapsing Varroa-infected colonies are often overwhelmed with high levels of picornaviruses. To examine the underlying viral diversity in honey bees, we employed viral metatranscriptomics analyses on three geographically diverse Varroa-resistant populations from Europe, Africa, and the Pacific. We describe seven novel viruses from a range of diverse viral families, including two viruses that are present in all three locations. In honey bees, small RNA sequences indicate that these viruses are processed by Dicer and the RNA interference pathway, whereas Varroa mites produce strikingly novel small RNA patterns. This work increases the number and diversity of known honey bee viruses and will ultimately contribute to improved disease management in our most important agricultural pollinator.


Apidologie ◽  
2017 ◽  
Vol 49 (2) ◽  
pp. 243-251
Author(s):  
Elisabeth Fung ◽  
Kelly Hill ◽  
Katja Hogendoorn ◽  
Andrew B. Hingston ◽  
Richard V. Glatz

1998 ◽  
Vol 8 (4) ◽  
pp. 590-594 ◽  
Author(s):  
M.S. Stanghellini ◽  
J.T. Ambrose ◽  
J.R. Schultheis

The effectiveness of bumble bees, Bombus impatiens Cresson, and honey bees, Apis mellifera L., on the pollination of cucumber, Cucumis sativus L., and watermelon, Citrullus lanatus (Thunb.) Matsum. & Nakai, was compared under field conditions. Comparisons were based on fruit abortion rates and seed set as influenced by bee type (honey bee or bumble bee) and the number of bee visits to treatment flowers (1, 6, 12, and 18 bee visits), plus two controls: a no-visit treatment and an open-pollinated (unrestricted visitation) treatment. For both crops, an increased number of bee visits had a strong positive effect on fruit and seed set. All cucumber and watermelon flowers bagged to prevent insect visitation aborted, demonstrating the need for active transfer of pollen between staminate and pistillate flowers. Bumble bee-visited flowers consistently had lower abortion rates and higher seed sets in the cucumber and watermelon studies than did honey bee-visited flowers when compared at the same bee visitation level. Only slight differences in fruit abortion rates were detected between bee types in the watermelon study. However, abortion rates for bumble bee-visited flowers were consistently less than those for honey bee-visited flowers when compared at equal bee visitation levels, with one exception at the 12 bee visit level. As the number of honey bee colonies continues to decline due to parasitic mite pests and based on the data obtained, we conclude that bumble bees have a great potential to serve as a supplemental pollinator for cucumbers, watermelons, and possibly other vine crops, when honey bees available for rental are in limited supply.


Sign in / Sign up

Export Citation Format

Share Document